1
|
Ntelane TS, Feleni U, Mthombeni NH, Kuvarega AT. CuFeS 2 supported on dendritic mesoporous silica-titania for persulfate-assisted degradation of sulfamethoxazole under visible light. J Colloid Interface Sci 2024; 654:660-676. [PMID: 37864871 DOI: 10.1016/j.jcis.2023.10.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Sulfamethoxazole (SMX) is a prevalent sulfonamide antibiotic found in the environment, and it has a variety of detrimental effects on environmental sustainability and water safety. Recently, the combination of photocatalysis and sulfate radical-based advanced oxidation processes (SR-AOPs) has attracted a lot of interest as a viable technique for degradation of refractory pollutants. In this study, a visible light active CuFeS2 supported on dendritic mesoporous silica-titania (CuFeS2-DMST) photocatalyst was synthesized to improve the ability of TiO2 to activate persulfate (PS) by introducing CuFeS2 (Fe2+/Fe3+, Cu+/Cu2+ redox cycles). The CuFeS2-DMST/PS/Vis system demonstrated superior SMX degradation efficiency (88.9%, 0.0146 min-1) than TiO2 because of reduced e-/h+ recombination, excellent charge separation and mobility, and a greater surface area than TiO2. Furthermore, after four consecutive photocatalytic cycles, the system demonstrated moderate stability. From chemical quenching tests, O2●-, h+, 1O2, SO4●- and ●OH were found to be the main reactive oxidizing species. The formed intermediates during the degradation process were identified, and degradation mechanisms were proposed. This study proposes a viable technique for activating PS using a low-cost, stable, and high-surface-area TiO2-based photocatalyst, and this concept can be applied to design photocatalysts for water treatment.
Collapse
Affiliation(s)
- Tau S Ntelane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa; Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida, 1710, Johannesburg, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Florida, 1710, Johannesburg, South Africa; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa.
| |
Collapse
|
2
|
Liaqat M, Iqbal T, Ashfaq Z, Afsheen S, Mahmood Khan RR, Sayed MA, Ali AM. Comparative photocatalytic study of visible light driven BiVO4, Cu2O, and Cu2O/BiVO4 nanocomposite for degradation of antibiotic for wastewater treatment. J Chem Phys 2023; 159:204704. [PMID: 38010333 DOI: 10.1063/5.0176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Semiconductor-based photocatalysts have become increasingly used in the removal of pollutants from wastewater, especially antibiotics. A series of composite-based cuprous oxide and bismuth vanadate (Cu2O/BiVO4) composite-based photocatalysts were synthesized by using the chemical method. The structure of the Cu2O/BiVO4 composite was verified by using x-ray diffraction, scanning electron microscopy, photoluminescence, Fourier transform infrared spectroscopy, and UV-visible spectra. The degradation of methylene blue (MB) and tetracycline (TC) was investigated to check the photocatalytic activity of the Cu2O/BiVO4 composite series. The quantity of Cu2O was varied from 1% to 7% by weight to prepare the series of Cu2O/BiVO4 composites. The analysis of results verified that 5% Cu2O/BiVO4 exhibits an outstanding photocatalytic activity as compared to 1%, 3%, and 7% Cu2O/BiVO4, pure Cu2O, and pure BiVO4 under visible light irradiation. The optimum value of photocatalytic degradation achieved with 5% Cu2O/BiVO4 was 97% for MB dye and 95% for TC in 120 min, which is greater than the photocatalytic degradation of pure BiVO4 (MB 45% and TC 72%), pure Cu2O (MB 57% and TC 80%), 1% Cu2O/BiVO4 (MB 72% and TC 85%), 3% Cu2O/BiVO4 (MB 83% and TC 88%), and 7% Cu2O/BiVO4 (MB 87% and TC 91%). The stability and reusability of Cu2O/BiVO4 were also investigated. To check the major role of trapping in degradation, a trapping experiment was also performed by using three trapping agents: BQ, EDTA, and tBuOH. The results showed that Cu2O/BiVO4 exhibits an improved photocatalytic activity in the degradation of antibiotics in polluted water because the recombination rate of the electron-hole pair decreased and the surface area increased, which increased the active sites for redox reactions. Such a photocatalytic composite with high efficiency has various applications, such as energy production, environmental remediation, and water remediation.
Collapse
Affiliation(s)
- Maira Liaqat
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Zain Ashfaq
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | | | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Atif Mossad Ali
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Hao C, Zhang J, Li N, Zhou T, E X, Zhao X. Size-dependent design of ultrathin g-C3N4 nanomesh with N defects towards superior visible-light photocatalytic efficiency. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tong S, Zhou J, Ding L, Zhou C, Liu Y, Li S, Meng J, Zhu S, Chatterjee S, Liang F. Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Belik YA, Vodyankin AA, Fakhrutdinova ED, Svetlichnyi VA, Vodyankina OV. Photoactive bismuth silicate catalysts: Role of preparation method. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|