1
|
Gupt U, Premkumar HB, Nunez JPJ, Mallick J, Hadimani RL, Kar M, Dayal V, Prabhu TN. Exploring Optically Stable Reddish-Orange Fluorescent Magnetic Pigment (0.90)Y 2O 3:(0.10-x)Eu 3+:(x)Bi 3+ for Anti-counterfeiting Applications. J Fluoresc 2025; 35:291-306. [PMID: 38041793 DOI: 10.1007/s10895-023-03520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
The (0.90)Y2O3:(0.10-x)Eu3+:(x)Bi3+ nanophosphors (0.00 ≤ x ≤ 0.06) are synthesised using chemical combustion citrate route and characterized via X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, UV- visible and photoluminescence spectroscopy. The scanning electron micrographs indicate that the grain size of the phosphors ranges between 40 to 50 nm. The photoluminescence (PL) spectra, acquired under the excitation wavelength of 365 nm of ultraviolet light, show emission peaks at wavelengths 580 nm, 586-598 nm, 610 nm, 629-661 nm and 686-695 nm corresponding to the 5D0 → 7FJ electronic transitions of the Eu3+ ion with J = 0, 1, 2, 3 and 4, respectively. The most intense PL spectra at 611 nm (5D0 → 7F2), showcasing reddish-orange emission, indicate a higher concentration of Eu3+ ions in asymmetric sites within the Y2O3 host matrix. The presence of the distinct electronic transitions of Eu3+ in PL spectra acclaims that Bi3+ ions transfer their energy efficiently to Eu3+ ions in the matrix. Physical and chemical tests are being conducted on nanophosphors with Bi3+ substitutional doping of x = 0.02 and x = 0.04, both demonstrating intense PL emission. Magnetisation measurements suggest the soft magnetic nature of the nanophosphors, attributing it to the presence of Eu3+ ions in the 7F2 state. The highest PL intensity is seen in the nanophosphor (x = 0.04) with substitutional doping of 6% of Eu3+ and 4% of Bi3+ in Y2O3. This nanophosphor also demonstrates excellent optical stability in the investigated conditions and exhibits soft magnetic behaviour, positioning it as a promising material for incorporation as a fluorescent magnetic pigment in security ink applications. These features serve to prevent counterfeiting of secured documents both optically and magnetically.
Collapse
Affiliation(s)
- Udayan Gupt
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, 560058, India
| | - H B Premkumar
- Department of Physics, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, 560058, India.
| | - John Peter J Nunez
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, 23285, USA
| | - Jyotirekha Mallick
- Department of Physics, Indian Institute of Technology-Patna, Patna, Bihar, 801106, India
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, 23285, USA
| | - Manoranjan Kar
- Department of Physics, Indian Institute of Technology-Patna, Patna, Bihar, 801106, India
| | - Vijaylakshmi Dayal
- Department of Physics, Maharaja Institute of Technology Mysore (Affiliated to Visvesvaraya Technological University, Belagavi), Mandya, 571477, Karnataka, India.
| | - T Niranjana Prabhu
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Bengaluru, 560058, India.
| |
Collapse
|
2
|
Luo D, He H, Jing H, Ling Y, Jia Y, Yang Y, Liu X, Chen Z, Deng M. Nanosheets of two-dimensional photoluminescent lanthanide phosphonocarboxylate frameworks decorated with free carboxylic groups for latent fingerprint imaging. Dalton Trans 2023. [PMID: 37334841 DOI: 10.1039/d3dt01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The synthesis, structural characterization, exfoliation, and photophysical studies of two-dimensional (2-D) lanthanide phosphonates, named Ln(m-pbc); [Ln(m-Hpbc)(m-H2pbc)(H2O)] (Ln = Eu, Tb; m-pbc = 3-phosphonobenzoic acid) based on the phosphonocarboxylate ligand, are reported. These compounds are neutral polymeric 2D layered structures with pendent uncoordinated carboxylic groups between layers. The nanosheets were obtained by a top-down strategy involving sonication-assisted solution exfoliation and characterized by atomic force microscopy and transmission electron microscropy, showing lateral dimensions from nano- to micro-meter scales, and thicknesses down to several layers. The photoluminescence studies demonstrate that the m-pbc ligand acts as an efficient antenna toward Eu and Tb(III) ions. The emission intensities of dimetallic compounds are clearly enhanced after incorporation of Y(III) ions due to the dilution effect. Ln(m-pbc)s were then applied for labelling latent fingerprints. It is worth noting that the reaction between active carboxylic groups and fingerprint residues benefits the labelling, showing efficient imaging for fingerprints on all kinds of material surfaces.
Collapse
Affiliation(s)
- Dan Luo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Hongjie He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Huiru Jing
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Mingli Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Kalaburgi B, Radha Krushna B, Subramanian B, Daruka Prasad B, Manjunatha K, Yun Wu S, Shetty A, Nagabhushana H. Orange-red emitting MoO3:Sm3+ transparent nano-composite films for anti-counterfeiting and data secure applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|