1
|
Xuan X, Li Y, Xu X, Pan Z, Li Y, Luo Y, Sun L. Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications. Gels 2025; 11:67. [PMID: 39852038 PMCID: PMC11764729 DOI: 10.3390/gels11010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m3 to 1400 kJ/m3, achieved by modulating the concentrations of acrylamide (AM) and Fe3O4 nanoparticles. These hydrogels exhibit rapid heating under an alternating magnetic field, reaching 44.4 °C within 600 s at 15 wt%, demonstrating the potential for use in mild magnetic hyperthermia. Furthermore, the integration of Fe3O4 nanoparticles and nanoclay into the AM precursor optimizes the rheological properties and ensures high printability, enabling the fabrication of complex, high-fidelity structures through extrusion-based 3D printing. Compared to existing magnetic hydrogels, our 3D-printable platform uniquely combines adjustable mechanical properties, strong adhesion, and multifunctionality, offering enhanced capabilities for use in magnetic actuation and hyperthermia in biomedical applications. This advancement marks a significant step toward the scalable production of next-generation intelligent hydrogels for precision medicine and bioengineering.
Collapse
Affiliation(s)
- Xueting Xuan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yi Li
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Xing Xu
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
| | - Zhouyi Pan
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Yu Li
- Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China; (Y.L.)
| | - Yonghao Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832004, China
| | - Li Sun
- Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Duan H, Zhang Y, Zhang Y, Zhu P, Mao Y. Recent Advances of Stretchable Nanomaterial-Based Hydrogels for Wearable Sensors and Electrophysiological Signals Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1398. [PMID: 39269060 PMCID: PMC11397736 DOI: 10.3390/nano14171398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
Electrophysiological monitoring is a commonly used medical procedure designed to capture the electrical signals generated by the body and promptly identify any abnormal health conditions. Wearable sensors are of great significance in signal acquisition for electrophysiological monitoring. Traditional electrophysiological monitoring devices are often bulky and have many complex accessories and thus, are only suitable for limited application scenarios. Hydrogels optimized based on nanomaterials are lightweight with excellent stretchable and electrical properties, solving the problem of high-quality signal acquisition for wearable sensors. Therefore, the development of hydrogels based on nanomaterials brings tremendous potential for wearable physiological signal monitoring sensors. This review first introduces the latest advancement of hydrogels made from different nanomaterials, such as nanocarbon materials, nanometal materials, and two-dimensional transition metal compounds, in physiological signal monitoring sensors. Second, the versatile properties of these stretchable composite hydrogel sensors are reviewed. Then, their applications in various electrophysiological signal monitoring, such as electrocardiogram monitoring, electromyographic signal analysis, and electroencephalogram monitoring, are discussed. Finally, the current application status and future development prospects of nanomaterial-optimized hydrogels in wearable physiological signal monitoring sensors are summarized. We hope this review will inspire future development of wearable electrophysiological signal monitoring sensors using nanomaterial-based hydrogels.
Collapse
Affiliation(s)
- Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yilong Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
He C, Wu L, Gu G, Wei L, Yang C, Chen M. An Ionic Assisted Enhancement Strategy Enabled High Performance Flexible Pressure-Temperature Dual Sensor. NANO LETTERS 2024; 24:7040-7047. [PMID: 38804573 DOI: 10.1021/acs.nanolett.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Flexible pressure sensors with a broad range and high sensitivity are greatly desired yet challenging to build. Herein, we have successfully fabricated a pressure-temperature dual sensor via an ionic assisted charge enhancement strategy. Benefiting from the immobilization effect for [EMIM+] [TFSI-] ion pairs and charge transfer between ionic liquid (IL) and HFMO (H10Fe3Mo21O51), the formed IL-HFMO-TPU pressure sensor shows a high sensitivity of 25.35 kPa-1 and broad sensing range (∼10 MPa), respectively. Furthermore, the sensor device exhibits high durability and stability (5000 cycles@1 MPa). The IL-HFMO-TPU sensor also shows the merit of good temperature sensing properties. Attributed to these superior properties, the proposed sensor device could detect pressure in an ultrawide sensing range (from Pa to MPa), including breathe and biophysical signal monitoring etc. The proposed ionic assisted enhancement approach is a generic strategy for constructing high performance flexible pressure-temperature dual sensor.
Collapse
Affiliation(s)
- Chenying He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lie Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guoqiang Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
He Y, Xu X, Xiao S, Wu J, Zhou P, Chen L, Liu H. Research Progress and Application of Multimodal Flexible Sensors for Electronic Skin. ACS Sens 2024; 9:2275-2293. [PMID: 38659386 DOI: 10.1021/acssensors.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, wearable electronic skin has garnered significant attention due to its broad range of applications in various fields, including personal health monitoring, human motion perception, human-computer interaction, and flexible display. The flexible multimodal sensor, as the core component of electronic skin, can mimic the multistimulus sensing ability of human skin, which is highly significant for the development of the next generation of electronic devices. This paper provides a summary of the latest advancements in multimodal sensors that possess two or more response capabilities (such as force, temperature, humidity, etc.) simultaneously. It explores the relationship between materials and multiple sensing capabilities, focusing on both active materials that are the same and different. The paper also discusses the preparation methods, device structures, and sensing properties of these sensors. Furthermore, it introduces the applications of multimodal sensors in human motion and health monitoring, as well as intelligent robots. Finally, the current limitations and future challenges of multimodal sensors will be presented.
Collapse
Affiliation(s)
- Yin He
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Xiaoxuan Xu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Shuang Xiao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Xinxing Cathay (Shanghai) Engineering Science and Technology Research Institute Co., Ltd., Shanghai 201400, China
| | - Junxian Wu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Winner Medical (Wuhan) Co., Ltd., Wuhan 430415, Hubei province, China
| | - Peng Zhou
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Li Chen
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| |
Collapse
|
5
|
Zhang R, Yang A, Yang Y, Zhu Y, Song Y, Li Y, Li J. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Int J Biol Macromol 2023; 245:125469. [PMID: 37343611 DOI: 10.1016/j.ijbiomac.2023.125469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Flexible strain sensors have attracted substantial attention given their application in human-computer interaction and personal health monitoring. Due to the inherent disadvantages of conventional hydrogels, the manufacture of hydrogel strain sensors with high tensile strength, excellent adhesion, self-healing and antimicrobial properties in vitro, and conductive stability is still a challenge. Herein, a conductive hydrogel consisting of polydopamine-coated cellulose nanofibers (CNF@PDA), carbon nanotubes (CNT), and polyvinyl alcohol (PVA) was developed. The CNTs in PVA/CNF@PDA/CNT hydrogels were uniformly dispersed in the presence of CNF@PDA by hydrogen bonding, resulting in a nearly threefold increase in conductivity (0.4 S/m) over hydrogels without PDA. The hydrogel exhibited satisfactory tensile properties (tensile stress up to 0.79 MPa), good fatigue resistance, self-recovery and excellent antimicrobial activity in vitro. It showed excellent adhesion, especially the adhesion strength of pigskin was increased to 27 kPa. In addition, the hydrogel was used as a strain sensor, exhibiting excellent strain sensitivity (strain coefficient = 2.29), fast response (150 ms), and great durability (over 1000 cycles). The fabricated strain sensors can detect both large and subtle human movements (e.g., wrist bending and vocalization) with stable and repeatable electrical signals, indicating potential applications in personal health monitoring.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| | - Yao Li
- Center for Composite Materials and Structure,Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| |
Collapse
|
6
|
Qu M, Lv Y, Ge J, Zhang B, Wu Y, Shen L, Liu Q, Yan M, He J. Hydrophobic and Multifunctional Strain, Pressure and Temperature Sensor Based on TPU/SiO2-ILs Ionogel for Human motion monitoring, Liquid Drop Monitoring, Underwater Applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Howard E, Li M, Kozma M, Zhao J, Bae J. Self-strengthening stimuli-responsive nanocomposite hydrogels. NANOSCALE 2022; 14:17887-17894. [PMID: 36448666 DOI: 10.1039/d2nr05408f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly(N-isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling-deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling-deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.
Collapse
Affiliation(s)
- Elizabeth Howard
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Kozma
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jiayu Zhao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jinhye Bae
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Chemical Engineering Program, Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Man J, Chen G, Chen J. Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors. BIOSENSORS 2022; 12:1054. [PMID: 36421172 PMCID: PMC9688171 DOI: 10.3390/bios12111054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/14/2023]
Abstract
In the past two decades, biomimetic tactile sensing technology has been a hot spot in academia. It has prospective applications in many fields such as medical treatment, health monitoring, robot tactile feedback, and human-machine interaction. With the rapid development of magnetic sensors, biomimetic tactile sensing technology based on magnetic sensors (which are called magnetic tactile sensors below) has been widely studied in recent years. In order to clarify the development status and application characteristics of magnetic tactile sensors, this paper firstly reviews the magnetic tactile sensors from three aspects: the types of magnetic sensors, the sources of magnetic field, and the structures of sensitive bodies used in magnetic tactile sensors. Secondly, the development of magnetic tactile sensors in four applications of robot precision grasping, texture characterization, flow velocity measurement, and medical treatment is introduced in detail. Finally, this paper analyzes technical difficulties and proposes prospective research directions for magnetic tactile sensors.
Collapse
Affiliation(s)
- Jiandong Man
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyuan Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Poly(N-isopropylacrylamide) Based Electrically Conductive Hydrogels and Their Applications. Gels 2022; 8:gels8050280. [PMID: 35621578 PMCID: PMC9142127 DOI: 10.3390/gels8050280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) based electrically conductive hydrogels (PNIPAM-ECHs) have been extensively studied in recent decades due to their thermal-responsive (leading to the volume change of hydrogels) and electrically conductive performance. The incorporation of conductive components into the PNIPAM hydrogel network makes it become conductive hydrogel, and as a result, the PNIPAM hydrogel could become sensitive to an electrical signal, greatly expanding its application. In addition, conductive components usually bring new stimuli-responsive properties of PNIPAM-based hydrogels, such as near-infrared light and stress/strain responsive properties. PNIPAM-ECHs display a wide range of applications in human motion detection, actuators, controlled drug release, wound dressings, etc. To summarize recent research advances and achievements related to PNIPAM-ECHs, this manuscript first reviews the design and structure of representative PNIPAM-ECHs according to their conductive components. Then, the applications of PNIPAM-ECHs have been classified and discussed. Finally, the remaining problems related to PNIPAM-ECHs have been summarized and a future research direction is proposed which is to fabricate PNIPAM-ECHs with integrated multifunctionality.
Collapse
|