1
|
Liu D, Shehzad H, Zhou L, Farooqi ZH, Sharif A, Ahmed E, Ouyang J, Masrur DM, Abed K, Fatima M, Rehman S. Encapsulation of Bamboosa vulgaris culms derived activated biochar into hierarchical permeable, phosphate rich and functionalized alginate aerogel composites and its contribution in U(VI) adsorption. Int J Biol Macromol 2024; 280:135690. [PMID: 39284474 DOI: 10.1016/j.ijbiomac.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, a facile methodology was designed to encapsulate Bamboosa vulgaris culms derived activated biochar (BVC) in a variable mass ratio, into a three-dimensional hierarchical porous and permeable and amino-thiocarbamated alginate (TSC) to prepare hybrid biosorbents (BVC-MSA). These ultralight and lyophilized phosphate rich macroporous sorbents were rationally characterized through FTIR, XRD, BET, SEM-EDS, elemental mapping, XPS techniques and employed for efficient UO22+ adsorption from aqueous solutions. The phytic acid (PA) was found to be a suitable hydrophilic and phosphorylating agent for the TSC matrix through hydrogen-bonded crosslinking when employed in a correct mass ratio (1:3). The SEM-EDS and XPS analyses confirmed the UO22+ sorption onto BVC-MSA-3 (the most suitable composite with a BVC/TSC mass ratio of 30.0 % w/w) and provided evidence of heteroatom involvement in developing the physico-chemical interactions. The BCV-MSA-3 exhibited the best response as a sorbent during kinetics/sorption process, therefore, it was selected to study the equilibrium sorption studies. The BCV-MSA-3 removal efficiency increased from 12.1 to 94.2 % using 0.2 to 1.8 g/L sorbent dose at pH (4.5). The mentioned sorbent displayed a significant maximum sorption capacity qm (309.55 mg/g at 35 °C) calculated through the best-fitted Langmuir and Temkin models (R2 ≈ 0.99). The sorption kinetics followed the pseudo-second-order (PSORE) model and exhibited fast sorption rate teq (180 min). Thermodynamic parameters clarified that the sorption process is feasible ΔGo (-25.3 to -27.6 kJ/mol kJ/mol), endothermic ΔHo (27.17 kJ/mol), and proceeds with a positive entropy (0.176 kJ/mol.K). The study shows that BCV-MSA-3 could be an alternative and auspicious sorbent for uranium removal from aqueous solution.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Hamza Shehzad
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China; School of Chemistry and Materials Science, East China University of Technology, China.
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Din Mohammad Masrur
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - KhalilUllah Abed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Manahil Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Sadia Rehman
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Zhu J, Wang J, Liu Q, Yu J, Liu J, Chen R, Song D, Li R, Wang J. Advanced MXene-based materials for efficient extraction of uranium from seawater and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173755. [PMID: 38851336 DOI: 10.1016/j.scitotenv.2024.173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
In order to realize the low-carbon development policy, the large-scale development and utilization of nuclear energy is very essential. Uranium is the key resource for nuclear industry. The extracting and recycling uranium from seawater and nuclear wastewater is necessary for secure uranium reserves, ensure energy security, control pollution and protect the environment. The novel nanomaterial MXene possesses the layered structure, high specific surface area, and modifiable surface terminal groups, which allowed it to enrich uranium. In addition, good photovoltaic and photothermal properties improves the ability to adsorb uranium. The excellent radiation resistance of the MAX phase strongly indicates the potential use of MXene as an effective uranium adsorbent. However, there are relatively few reviews on its application in uranium extraction and recovery. This review focuses on the recent advances in the use of MXene-based materials as highly efficient adsorbents for the recovery of uranium from seawater and nuclear wastewater. First, the structural, synthetic and characterization aspects of MXene materials are introduced. Subsequently, the adsorptive properties of MXene-based materials are evaluated in terms of uranium extraction recovery capability, selectivity, and reproducibility. Furthermore, the interaction mechanisms between uranium and MXene absorbers are discussed. Finally, the challenges for MXene materials in uranium adsorption applications are proposed for better design of new types of MXene-based adsorbents.
Collapse
Affiliation(s)
- Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China.
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China; College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Special Materials, Ministry of Industry and Information Technology, China.
| |
Collapse
|
3
|
Chen C, Liu X, Tian X, Feng J, Liu Y, Song M, Zhu W, Zhang Y. The efficient uptake of uranium by amine-functionalized β-cyclodextrin supported fly ash composite from polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172342. [PMID: 38608905 DOI: 10.1016/j.scitotenv.2024.172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A novel polyethyleneimine/polydopamine-functionalized β-cyclodextrin supported fly ash adsorbent (PEI/PDA/β-CD/FA) had been synthesized to uptake uranium from polluted water. At pH = 5.0 and T = 298 K, the uranium uptake efficiency and capacity of PEI/PDA/β-CD/FA reached to 98.7 % and 622.8 mg/g, respectively, which were much higher than those of FA (71.4 % and 206.7 mg/g).The excellent uranium uptake properties of PEI/PDA/β-CD/FA could be explained by three points: (1) using β-CD as a supporting material could effectively avoid the aggregation of FA and improve the hydrophily of FA; (2) the unique cavity structure of β-CD could form chelates with uranyl ions; (3) the formation of PEI/PDA co-deposition coating on FA further enhanced the affinity of FA to UO22+. With the presence of interfering ions, the uptake efficiency of PEI/PDA/β-CD/FA for uranium was still up to 94.5 % after five cycles, indicating the high selectively and recoverability of PEI/PDA/β-CD/FA. In terms of the results of characterizations, uranium was captured by PEI/PDA/β-CD/FA via electrostatic attraction, hydrogen bond, coordination and complexation. To sum up, PEI/PDA/β-CD/FA was expected to be used for actual sewage treatment owing to its excellent uranium uptake efficiency/capacity, selectivity, cycle stability and feasibility of actual application.
Collapse
Affiliation(s)
- Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaqi Feng
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yujia Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingjun Song
- The 210(th) Institute of the Sixth Academy of CASIC, Xian 710065, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
4
|
Zhang H, Mai Y, Xie S, Wang G, Wang S. Removal of U(VI) from acidic wastewater by persimmon tannin-functionalized chitosan. Appl Radiat Isot 2024; 205:111145. [PMID: 38194887 DOI: 10.1016/j.apradiso.2023.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
With sodium tripolyphosphate (STPP) as cross-linker, Persimmon tannin-chitosan microspheres (PT-CS) were synthesized by hydrothermal for removing U(VI) from acidic effluent. The batch experiments indicated that PT-CS adsorbed U(VI) most effectively at pH 1.5, the maximum adsorption capacity for PT-CS was 245 mg/g. Compared to pure CS dissolved at pH 3, PT-CS still maintain high stability at pH 1. Moreover, single system of common metal ions in rare earth wastewater only slightly affected the adsorption of uranium at pH 1.5, but this process was inhibited about 30% at pH 5. Those results indicated that the selectivity of PT-CS for uranium removal could be controlled by regulating the pH and there are excellent potentials for PT-CS using in acid metal water treatment. Its adsorption selectivity and ability to adapt different condition was demonstrated with uraniferous rare earth wastewater treatment. The adsorption for PT-CS to U(VI) were well fitted for both Langmuir isothern and pseudo-secondary kinetic model equations, and that meant chemisorption dominated the removal process. Spectroscopic analyses confirmed that the adsorption of U(VI) occurred via surface complexation by -OH and ion exchange with Na+. Therefore, this study provides a high-efficiency, low-cost, valuable and highly adaptable method for the treatment of acidic uranium-containing effluents.
Collapse
Affiliation(s)
- Haibo Zhang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yingqing Mai
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China; Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Guohua Wang
- School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Shuiyun Wang
- Nonferrous Metallurgy Design and Research Institute, Changsha 410000, China
| |
Collapse
|
5
|
Ayiotis A, Georgiou E, Ioannou PS, Pashalidis I, Krasia-Christoforou T. 3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6577. [PMID: 37834714 PMCID: PMC10574392 DOI: 10.3390/ma16196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg-1 (404.6 mg·g-1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater.
Collapse
Affiliation(s)
- Andreas Ayiotis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Panagiotis S. Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| |
Collapse
|
6
|
Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, Wang S, Chen J, Wang X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. BIOCHAR 2022; 4:45. [DOI: doi.org/10.1007/s42773-022-00173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/17/2022] [Indexed: 06/25/2023]
Abstract
AbstractThe fast increase of population results in the quick development of industry and agriculture. Large amounts of contaminants such as metal ions and organic contaminants are released into the natural environment, posing a risk to human health and causing environment ecosystem problems. The efficient elimination of contaminants from aqueous solutions, photocatalytic degradation of organic pollutants or the in-situ solidification/immobilization of heavy metal ions in solid phases are the most suitable strategies to decontaminate the pollution. Biochar and biochar-based composites have attracted multidisciplinary interests especially in environmental pollution management because of their porous structures, large amounts of functional groups, high adsorption capacities and photocatalysis performance. In this review, the application of biochar and biochar-based composites as adsorbents and/or catalysts for the adsorption of different contaminants, adsorption-photodegradation of organic pollutants, and adsorption-(photo)reduction of metal ions are summarized, and the mechanism was discussed from advanced spectroscopy analysis and DFT calculation in detail. The doping of metal or metal oxides is the main strategy to narrow the band gap, to increase the generation and separation of photogenerated e−-h+pairs, to produce more superoxide radicals (·O2−) and hydroxyl radicals (·OH), to enhance the visible light absorption and to increase photocatalysis performance, which dominate the photocatalytic degradation of organic pollutants and (photo)reduction of high valent metals to low valent metals. The biochar-based composites are environmentally friendly materials, which are promising candidates in environmental pollution cleanup. The challenge and perspective for biochar-based catalysts are provided in the end.Graphical Abstract
Collapse
|