1
|
Lin CH, Yeh YJ, Chien TH, Chen SY, Veeramuthu L, Kuo CC, Tung KL, Chiang WH. Compact Disc-Derived Nanocarbon-Supported Catalysts with Extreme Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8147-8157. [PMID: 39843397 PMCID: PMC11803566 DOI: 10.1021/acsami.4c17754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Advanced carbon-metal hybrid materials with controllable electronic and optical properties, as well as chemical reactivities, have attracted significant attention for emerging applications, including energy conversion and storage, catalysis and environmental protection. However, the commercialization of these materials is hampered by several vital problems, including energy-intensive synthesis and expensive chemicals, and inefficient control of their structures and properties. Herein, we report the simple and controllable engineering of nanocarbon-metal self-assembled silver nanocatalysts (SSNs) derived from polycarbonate (PC)-based optical discs using microplasmas under ambient conditions. The plasma-engineered catalysts exhibited controlled properties including surface functionalities, hydrophilicities, Ag+/Ag0 metallic states, and Ag loading. The synthesized catalysts leverage localized surface plasmon resonance (LSPR) properties, enabling enhanced catalytic activity for the rapid reduction of carcinogenic 4-nitrophenol (4-NP) to the valuable pharmaceutical intermediate 4-aminophenol (4-AP), achieving a high reaction rate constant of 0.2 ± 0.0 s-1 and completing the reduction in just 30 s. Demonstrating robust performance, the SSNs maintained up to 90% conversion efficiency after ten recycling cycles, underscoring their stability and reusability. This work not only presents an effective approach to upcycling optical disc waste, but also highlights the potential of plasma-engineered nanocatalysts in environmental remediation, offering a low-energy solution for high-efficiency pollutant reduction.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Jui Yeh
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Tzu-Hsiang Chien
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Shao-Yu Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei 10608, Taiwan
| | - Chi-Ching Kuo
- Institute
of Organic and Polymeric Materials, Research and Development Center
of Smart Textile Technology, National Taipei
University of Technology, Taipei 10608, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10607, Taiwan
| | - Kuo-Lun Tung
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
2
|
Jackulin F, Senthil Kumar P, Chitra B, Karthick S, Rangasamy G. A review on recent advancements in the treatment of polyaromatic hydrocarbons (PAHs) using sulfate radicals based advanced oxidation process. ENVIRONMENTAL RESEARCH 2024; 253:119124. [PMID: 38734294 DOI: 10.1016/j.envres.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Polyaromatic hydrocarbons (PAHs) are the most persistent compounds that get contaminated in the soil and water. Nearly 16 PAHs was considered to be a very toxic according US protection Agency. Though its concentration level is low in the environments but the effects due to it, is enormous. Advanced Oxidation Process (AOP) is an emergent methodology towards treating such pollutants with low and high molecular weight of complex substances. In this study, sulfate radical (SO4‾•) based AOP is emphasized for purging PAH from different sources. This review essentially concentrated on the mechanism of SO4‾• for the remediation of pollutants from different sources and the effects caused due to these pollutants in the environment was reduced by this mechanism is revealed in this review. It also talks about the SO4‾• precursors like Peroxymonosulfate (PMS) and Persulfate (PS) and their active participation in treating the different sources of toxic pollutants. Though PS and PMS is used for removing different contaminants, the degradation of PAH due to SO4‾• was presented particularly. The hydroxyl radical (•OH) mechanism-based methods are also emphasized in this review along with their limitations. In addition to that, different activation methods of PS and PMS were discussed which highlighted the performance of transition metals in activation. Also this review opened up about the degradation efficiency of contaminants, which was mostly higher than 90% where transition metals were used for activation. Especially, on usage of nanoparticles even 100% of degradation could be able to achieve was clearly showed in this literature study. This study mainly proposed the treatment of PAH present in the soil and water using SO4‾• with different activation methodologies. Particularly, it emphasized about the importance of treating the PAH to overcome the risk associated with the environment and humans due to its contamination.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - S Karthick
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
3
|
Tagawa M, Kaneki H, Kawai T. Conductive Nanosheets Fabricated from Au Nanoparticles on Aqueous Metal Solutions under UV Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:842. [PMID: 38399093 PMCID: PMC10890084 DOI: 10.3390/ma17040842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Highly transparent, conductive nanosheets are extremely attractive for advanced opto-electronic applications. Previously, we have demonstrated that transparent, conductive Au nanosheets can be prepared by UV irradiation of Au nanoparticle (AuNP) monolayers spread on water, which serves as the subphase. However, thick Au nanosheets cannot be fabricated because the method is not applicable to large Au NPs. Further, in order to fabricate nanosheets with different thicknesses and compositions, it is necessary to prepare the appropriate NPs. A strategy is needed to produce nanosheets with different thicknesses and compositions from a single type of metal NP monolayer. In this study, we show that this UV irradiation technique can easily be extended as a nanosheet modification method by using subphases containing metal ions. UV irradiation of 4.7 nm AuNP monolayers on 480 µM HAuCl4 solution increased the thickness of Au nanosheets from 3.5 nm to 36.5 nm, which improved conductivity, but reduced transparency. On the other hand, the use of aqueous AgNO3 and CH3COOAg solutions yielded Au-Ag hybrid nanosheets; however, their morphologies depended on the electrolytes used. In Au-Ag nanosheets prepared on aqueous 500 µM AgNO3, Au and Ag metals are homogeneously distributed throughout the nanosheet. On the other hand, in Au-Ag nanosheets prepared on aqueous 500 µM CH3COOAg, AuNPs still remained and these AuNPs were covered with a Ag nanosheet. Further, these Au-Ag hybrid nanosheets had high conductivity without reduced transparency. Therefore, this UV irradiation method, modified by adding metal ions, is quite effective at improving and diversifying properties of Au nanosheets.
Collapse
Affiliation(s)
| | | | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
4
|
Fabrication of flexible conductive nanosheets at air-water interface by UV irradiation of loosely-packed AgNPs monolayer. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Ndlovu LN, Malatjie KI, Donga C, Mishra AK, Nxumalo EN, Mishra SB. Catalytic degradation of methyl orange using beta cyclodextrin modified polyvinylidene fluoride mixed matrix membranes imbedded with in‐situ generated palladium nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.53270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Cabangani Donga
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Ajay K. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
- Department of Chemistry Durban University of Technology Durban South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Shivani B. Mishra
- College of Pharmaceutical and Chemical Engineering Hebei University of Science and Technology Shijiazhuang China
- Academy of Nanotechnology and Wastewater Innovations Johannesburg South Africa
| |
Collapse
|
6
|
Synergistic activation of peroxymonosulfate for efficient aqueous p-nitrophenol degradation with Cu(II) and Ag(I) in Ag2Cu2O3. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Luo CW, Cai L, Xie C, Li G, Jiang TJ. Sulfur vacancies on MoS 2 enhanced the activation of peroxymonosulfate through the co-existence of radical and non-radical pathways to degrade organic pollutants in wastewater. RSC Adv 2022; 12:25364-25376. [PMID: 36275865 PMCID: PMC9486530 DOI: 10.1039/d2ra02448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
The enhancement of vacancies in catalysts involving Fenton-like reactions is a promising way to remove organic pollutants in wastewater, but sulfur vacancies are rarely involved. In this work, MoS2 containing defect sites were synthesized by a simple high-temperature treatment and then applied for activating peroxymonosulfate to eliminate organic pollutants in wastewater. The structure was characterized by several techniques such as XRD, BET, and XPS. Important influencing factors were systemically investigated. The results indicated that MoS2 with sulfur vacancies possessed a higher catalytic activity than that of the parent MoS2. The annealing temperature of the catalyst had a great effect on the removal of organic pollutants. Besides, the catalytic system had a wide pH range. Quenching and electron paramagnetic resonance (EPR) experiments indicated that the reaction system contained radical and non-radical species. The characterization results revealed that the defect sites in catalysts mainly strengthened the activity of catalysts. This study offers a new heterogeneous catalyst for the removal of organic pollutants via the peroxymonosulfate-based Fenton-like reactions. Sulfur vacancies on MoS2 enhanced the activation of peroxymonosulfate to remove organic pollutants in wastewater.![]()
Collapse
Affiliation(s)
- Cai-Wu Luo
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Co., Ltd, 243000, China
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, 350300, China
- School of Resource Environmental and Safety Engineering, University of South China, 421000, China
| | - Lei Cai
- School of Resource Environmental and Safety Engineering, University of South China, 421000, China
| | - Chao Xie
- School of Resource Environmental and Safety Engineering, University of South China, 421000, China
| | - Gang Li
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Co., Ltd, 243000, China
| | - Tian-Jiao Jiang
- School of Resource Environmental and Safety Engineering, University of South China, 421000, China
| |
Collapse
|