1
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. The development of multifunctional biochar with NiFe 2O 4 for the adsorption of Cd (II) from water systems: The kinetics, thermodynamics, and regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123705. [PMID: 39693989 DOI: 10.1016/j.jenvman.2024.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
High concentrations of Cd (II) in wastewater have been reported several times which attracted top research attention to mitigate the pollution impacts of the contaminant. Therefore, this study aimed to develop a Zn-doped NiFe2O4- pinecone biochar composite (ZNiF@PB) for the adsorption of Cd (II) from wastewater. FTIR confirmed immobilization of PB on the surface of ZNiF by the presence of C = O at 1638 cm-1, COOH at 1385 cm-1, C-O at 1009 cm-1 and Fe-O at 756 cm-1. Similarly, XRD determined the crystallite structure of the adsorbents where the ZNiF crystallite size of 43 nm was obtained while the particle size of ZNiF@PB was found to be 38 nm. These XRD results agreed with those values obtained from TEM images showing ZNiF and ZNiF@PB had a spherical shape with similar particle sizes. On the other hand, the surface areas of ZNiF, PB, and ZNiF@PB were found to be 78.4 m2/g, 125 m2/g, and 104 m2/g, respectively. These high surface areas have a huge potential to enhance Cd removal. With these adsorbents, the maximum Cd (II) adsorption of 96% was recorded at the optimum experimental condition of adsorbent dosage 0.5g/50 mL, solution pH 6, initial Cd (II) concentration 100 mg/L, and contact time 120 min. Practical adsorption kinetics data were well described by the pseudo-second order model whereas the adsorption isotherm was a perfect fit to the Langmuir isothermal model implying the adsorption process to be a monolayer with mainly a chemically bonded mechanism. In conclusion, this adsorbent is efficient for the adsorption of Cd (II) from wastewater and has also a huge potential to be applied for industrial-scale water purification.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
2
|
Ahmad S, Shah SA, Ahmed S. New chitosan schiff base-modified ferrite: Mechanistic insights and performance enhancement in photocatalysis and antibacterial applications. Int J Biol Macromol 2024; 283:136841. [PMID: 39461646 DOI: 10.1016/j.ijbiomac.2024.136841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Harnessing biocompatibility and magnetic separability a Chitosan Schiff base-modified ferrite is an innovative approach for addressing the issue of environmental pollution. This study aims to use a new visible light-activated photocatalyst made of cobalt ferrite (CoFe) anchored with Chitosan Schiff Base (CSB) to examine Rhodamine B (RhB) photodegradation. CSB@CoFe composite was synthesized using hydrothermal and sol-gel methods. This modified CSB composite and oxygen vacancies (OVs) have been proven by X-ray photoelectron spectroscopy, experimental calculations, and radical capture tests. The process of oxidative degradation is facilitated by radicals such as hydroxyl (OH•) and superoxide (O2•-), as evidenced by research utilizing reactive species capture. The CSB@CoFe photocatalyst degraded 94.5 % of Rhodamine B (RhB, 50 mg/L) in 60 min at pH 7 and 1.0 g/L. The CSB@CoFe heterostructure outperformed CSB against Gram-positive and Gram-negative bacteria. The photocatalyst exhibited exceptional stability across the five cycles. This study shows CSB@CoFe's persistent photocatalytic ability to degrade hazardous pollutants and act as an antimicrobial. It employs visible light to solve environmental issues positively.
Collapse
Affiliation(s)
- Sajad Ahmad
- Department of Chemistry, National Institute of Technology, Srinagar Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Shakeel A Shah
- Department of Chemistry, National Institute of Technology, Srinagar Hazratbal, Srinagar, Jammu and Kashmir 190006, India.
| | - Shakeel Ahmed
- Postgraduate Department of Chemistry, Government Postgraduate College Rajouri, Jammu and Kashmir 185131, India; Higher Education Department, Government of Jammu and Kashmir, Jammu 180001, India.
| |
Collapse
|
3
|
Ali MA, Maafa IM. Photodegradation of Amoxicillin in Aqueous Systems: A Review. Int J Mol Sci 2024; 25:9575. [PMID: 39273523 PMCID: PMC11395481 DOI: 10.3390/ijms25179575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018-2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented.
Collapse
Affiliation(s)
- Mohammad Ashraf Ali
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Hussain M, Mehmood A, Ali F, Sandhu ZA, Raza MA, Sajid S, Sohaib M, Khan MT, Bhalli AH, Hussain A, Arshid MS, Mehboob N, Al-Sehemi AG. Tuning the Magnetic Behavior of Zinc Ferrite via Cobalt Substitution: A Structural Analysis. ACS OMEGA 2024; 9:2536-2546. [PMID: 38250432 PMCID: PMC10795158 DOI: 10.1021/acsomega.3c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Cobalt-doped zinc ferrite is a contemporary material with significant structural and magnetic characteristics. Our study explores the magnetic properties of cobalt-substituted zinc ferrite (ZnxCo1-xFe2O4), synthesized via a simple sol-gel method. By varying the cobalt ratio from 0 to 0.5, we found that zinc substitution impacts both the magnetization and lattice parameters. FTIR analysis suggested the presence of functional groups, particularly depicting an M-O stretching band, within octahedral and tetrahedral clusters. X-ray diffraction analysis confirmed the phase purity and cubic structure. The synthesized materials exhibited an average particle size of 24-75 nm. Scanning electron microscopy revealed the morphological properties, confirming the formation of truncated octahedral particles. In order to determine the stability, mass loss (%), and thermal behavior, a thermal analysis (thermogravimetric analysis (TGA)/differential thermal analysis (DTA)) was performed. The magnetic properties of the synthesized ferrites were confirmed via a vibrating sample magnetometer (VSM). Finally, the highest saturated magnetization and lowest coercivity values were observed with higher concentrations of the cobalt dopant substituting zinc. The synthesized nanomaterials have good stability as compared to other such materials and can be used for magnetization in the near future.
Collapse
Affiliation(s)
- Muneer Hussain
- Department
of Basic Sciences, Riphah International
University, Islamabad 44000, Pakistan
| | - Arslan Mehmood
- Department
of Chemistry, Faculty of Science, University
of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Furqan Ali
- Department
of Physics, Faculty of Science, University
of Sialkot, Sialkot 51310, Pakistan
| | - Zeshan Ali Sandhu
- Department
of Chemistry, Faculty of Science, University
of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Muhammad Asam Raza
- Department
of Chemistry, Faculty of Science, University
of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Samavia Sajid
- Department
of Chemistry, Faculty of Science, University
of Engineering and Technology, Lahore 54890, Pakistan
| | - Muhammad Sohaib
- Department
of Physics, Faculty of Science, University
of Gujrat, Hafiz Hayat
Campus, Gujrat 50700, Pakistan
| | - Muhammad Tahir Khan
- Department
of Basic Sciences, Riphah International
University, Islamabad 44000, Pakistan
| | - Ali Haider Bhalli
- Department
of Physics, Faculty of Science, University
of Gujrat, Hafiz Hayat
Campus, Gujrat 50700, Pakistan
| | - Abrar Hussain
- Department
of Basic Sciences, Riphah International
University, Islamabad 44000, Pakistan
| | - Muhammad Sami Arshid
- Department
of Chemistry, Faculty of Science, University
of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Nasir Mehboob
- Department
of Basic Sciences, Riphah International
University, Islamabad 44000, Pakistan
| | - Abdullah G. Al-Sehemi
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. Advancing the development of nanocomposite adsorbent through zinc-doped nickel ferrite-pinecone biochar for removal of chromium (VI) from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168136. [PMID: 37923274 DOI: 10.1016/j.scitotenv.2023.168136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Leather and textile industrial effluents are the main disseminating routes for chromium contamination of water bodies, causing adverse impacts on public and environmental health. The attempt to remediate chromium through conventional wastewater treatment methods is inefficient. Therefore, this study aims to synthesize zinc-doped nickel ferrite pinecone biochar (Zn-NiF@PBC) nanocomposite for the removal of chromium from wastewater systems. The Zn-NiF@PBC nanocomposite was synthesized via the co-precipitation method. The properties of zinc-doped nickel ferrite (Zn-NiF) were effectively modified by blending with biochar at 1, 5, 10, and 15 % (w/w) which was successfully embedded with Zn-Ni ferrite nanoparticles. This was characterized and confirmed by typical adsorbent properties such as a high surface area of 104 m2/g, conducive pore volume of 0.117 cm3/g and pore size of 3.41 nm (BET), interactive multi-functional groups (FTIR), surface charge determination (pHpzc,), crystalline structure (XRD) and very rough surface morphology (SEM). The maximum chromium adsorption was found to be 95 % at the specific experimental condition of pH 3, adsorbent dose 1 g/50 mL, contact time 120 min, and initial chromium concentration 100 mg/L. The adsorption experimental data was best fitted with the Langmuir isotherm at R2 0.98 indicating the adsorption process was homogeneous and monolayer whereas the kinetics adsorption was resembling the second-order kinetic at R2 0.99. Moreover, the adsorption thermodynamics was spontaneous, endothermic, and increased the change in entropy. Finally, the regeneration of Zn-NiF@PBC was found to be effective up to five 5 cycles but gradually degrading in terms of removal efficiency after 3 cycles. In general, Zn-NiF@PBC can remediate chromium from wastewater with huge potential for scale-up and extend to other pollutants clear-up.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
6
|
Salih SJ, Mahmood WM. Review on magnetic spinel ferrite (MFe 2O 4) nanoparticles: From synthesis to application. Heliyon 2023; 9:e16601. [PMID: 37274649 PMCID: PMC10238938 DOI: 10.1016/j.heliyon.2023.e16601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Magnetic spinel ferrite materials offer various applications in biomedical, water treatment, and industrial electronic devices, which has sparked a lot of attention. This review focuses on the synthesis, characterization, and applications of spinel ferrites in a variety of fields, particularly spinel ferrites with doping. Spinel ferrites nanoparticles doped with the elements have remarkable electrical and magnetic properties, allowing them to be used in a wide range of applications such as magnetic fields, microwave absorbers, and biomedicine. Furthermore, the physical properties of spinel ferrites can be modified by substituting metallic atoms, resulting in improved performance. The most recent and noteworthy applications of magnetic ferrite nanoparticles are reviewed and discussed in this review. This review goes over the synthesis, doping and applications of different types of metal ferrite nanoparticles, as well as views on how to choose the appropriate magnetic ferrites based on the intended application.
Collapse
Affiliation(s)
- Shameran Jamal Salih
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Tishk International University, KRG, Erbil, Iraq
| | - Wali M. Mahmood
- Department of Chemistry, Koya University Koya KOY45, Kurdistan Region – F.R, Iraq
| |
Collapse
|
7
|
Gadore V, Mishra SR, Ahmaruzzaman M. Bio-inspired sustainable synthesis of novel SnS 2/biochar nanocomposite for adsorption coupled photodegradation of amoxicillin and congo red: Effects of reaction parameters, and water matrices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117496. [PMID: 36801688 DOI: 10.1016/j.jenvman.2023.117496] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study aims to fabricate a novel integrated photocatalytic adsorbent (IPA) via a green solvothermal process employing tea (Camellia sinensis var. assamica) leaf extract as a stabilizing and capping agent for the removal of organic pollutants from wastewater. An n-type semiconductor photocatalyst, SnS2, was chosen as a photocatalyst due to its remarkable photocatalytic activity supported over areca nut (Areca catechu) biochar for the adsorption of pollutants. The adsorption and photocatalytic properties of fabricated IPA were examined by taking amoxicillin (AM) and congo red (CR) as two emerging pollutants found in wastewater. Investigating synergistic adsorption and photocatalytic properties under varying reaction conditions mimicking actual wastewater conditions marks the novelty of the present research. The support of biochar for the SnS2 thin films induced a reduction in charge recombination rate, which enhanced the photocatalytic activity of the material. The adsorption data were in accordance with the Langmuir nonlinear isotherm model, indicating monolayer chemosorption with the pseudo-second-order rate kinetics. The photodegradation process follows pseudo-first-order kinetics with the highest rate constant of 0.0450 min-1 for AM and 0.0454 min-1 for CR. The overall removal efficiency of 93.72 ± 1.19% and 98.43 ± 1.53% could be achieved within 90 min for AM and CR via simultaneous adsorption and photodegradation model. A plausible mechanism of synergistic adsorption and photodegradation of pollutants is also presented. The effect of pH, Humic acid (HA) concentration, inorganic salts and water matrices have also been included.The photodegradation activity of SnS2 under visible light coupled with the adsorption capability of the biochar results in the excellent removal of the contaminants from the liquid phase.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
8
|
Afzia M, Khan RA, Ismail B, Zaki MEA, Althagafi TM, Alanazi AA, Khan AU. Correlation between Magnetic and Dielectric Response of CoFe 2O 4:Li 1+/Zn 2+ Nanopowders Having Improved Structural and Morphological Properties. Molecules 2023; 28:molecules28062824. [PMID: 36985796 PMCID: PMC10053858 DOI: 10.3390/molecules28062824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
The vast applicability of spinel cobalt ferrite due to its unique characteristics implies the need for further exploration of its properties. In this regard, structural modification at the O-site of spinel with Li1+/Zn2+ was studied in detail for exploration of the correlation between structural, magnetic, and dielectric properties of the doped derivatives. The CTAB-assisted coprecipitation method was adopted for the synthesis of the desired compositions owing to its cost effectiveness and size controlling ability. Redistribution of cations at T- and O-sites resulted in the expansion of the crystal lattice, but no distortion of the cubic structure was observed, which further supports the flexible crystal structure of spinel for accommodating larger Li1+/Zn2+ cations. Moreover, an XPS analysis confirmed the co-existence of the most stable oxidation states of Zn2+, Li1+, Co2+, and Fe3+ ions with unstable Co3+ and Fe2+ ions as well, which induces the probability of hopping mechanisms to a certain extent and is a well-established behavior of cobalt ferrite nanoparticles. The experimental results showed that Li1+/Zn2+ co-doped samples exhibit the best magnetic properties at dopant concentration x = 0.3. However, increasing the dopant content causes disturbance at both sites, resulting in decreasing magnetic parameters. It is quite evident from the results that dielectric parameters are closely associated with each other. Therefore, dopant content at x = 0.1 is considered the threshold value exhibiting the highest dielectric parameters, whereas any further increase would result in decreasing the dielectric parameters. The reduced dielectric properties and enhanced magnetic properties make the investigated samples a potential candidate for magnetic recording devices.
Collapse
Affiliation(s)
- Mahwish Afzia
- Applied and Analytical Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Rafaqat Ali Khan
- Applied and Analytical Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Bushra Ismail
- Applied and Analytical Chemistry Laboratory, Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia
| | - Talal M Althagafi
- Department of Physics, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz A Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
9
|
Evaluation of the photodegradation of pharmaceuticals and dyes in water using a highly visible light-active graphitic carbon nitride modified with tungsten oxide. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Parra-Marfil A, López-Ramón MV, Aguilar-Aguilar A, García-Silva IA, Rosales-Mendoza S, Romero-Cano LA, Bailón-García E, Ocampo-Pérez R. An efficient removal approach for degradation of metformin from aqueous solutions with sulfate radicals. ENVIRONMENTAL RESEARCH 2023; 217:114852. [PMID: 36457238 DOI: 10.1016/j.envres.2022.114852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 μM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- A Parra-Marfil
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico; Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - M V López-Ramón
- Grupo de Investigación en Materiales de Carbón y Medio Ambiente, Facultad de Ciencias Experimentales, Campus Las Lagunillas s/n, 23071, Jaén, Spain.
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - I A García-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - S Rosales-Mendoza
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - L A Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129, Zapopan, Jalisco, Mexico.
| | - E Bailón-García
- Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|