1
|
Effects of insecticide acephate on membrane mimetic systems: The role played by electrostatic interactions with lipid polar headgroups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Lira RB, Leomil FSC, Melo RJ, Riske KA, Dimova R. To Close or to Collapse: The Role of Charges on Membrane Stability upon Pore Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004068. [PMID: 34105299 PMCID: PMC8188222 DOI: 10.1002/advs.202004068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Indexed: 05/28/2023]
Abstract
Resealing of membrane pores is crucial for cell survival. Membrane surface charge and medium composition are studied as defining regulators of membrane stability. Pores are generated by electric field or detergents. Giant vesicles composed of zwitterionic and negatively charged lipids mixed at varying ratios are subjected to a strong electric pulse. Interestingly, charged vesicles appear prone to catastrophic collapse transforming them into tubular structures. The spectrum of destabilization responses includes the generation of long-living submicroscopic pores and partial vesicle bursting. The origin of these phenomena is related to the membrane edge tension, which governs pore closure. This edge tension significantly decreases as a function of the fraction of charged lipids. Destabilization of charged vesicles upon pore formation is universal-it is also observed with other poration stimuli. Disruption propensity is enhanced for membranes made of lipids with higher degree of unsaturation. It can be reversed by screening membrane charge in the presence of calcium ions. The observed findings in light of theories of stability and curvature generation are interpreted and mechanisms acting in cells to prevent total membrane collapse upon poration are discussed. Enhanced membrane stability is crucial for the success of electroporation-based technologies for cancer treatment and gene transfer.
Collapse
Affiliation(s)
- Rafael B. Lira
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
- Department of Theory and BiosystemsMax Planck Institute of Colloids and InterfacesPotsdam14424Germany
- Present address:
Moleculaire BiofysicaZernike InstituutRijksuniversiteitGroningen9747 AGThe Netherlands
| | | | - Renan J. Melo
- Instituto de FísicaUniversidade de São PauloSão Paulo05508‐090Brazil
| | - Karin A. Riske
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Rumiana Dimova
- Department of Theory and BiosystemsMax Planck Institute of Colloids and InterfacesPotsdam14424Germany
| |
Collapse
|
3
|
Imran A, Popescu D, Movileanu L. Cyclic Activity of an Osmotically Stressed Liposome in a Finite Hypotonic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3659-3666. [PMID: 32186881 PMCID: PMC7147966 DOI: 10.1021/acs.langmuir.9b03923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A lipid vesicle, or simply called a liposome, represents a synthetic compartment for the examination of transmembrane transport and signaling phenomena. Yet, a liposome is always subjected to size and shape fluctuations due to local and global imbalance of internal and external osmotic pressures. Here, we show that an osmotically stressed liposome placed within a hypotonic spherical bath undergoes cyclic dynamics described by a periodic sequence of swelling and relaxation phases. These two phases are interfaced by the appearance of a transient transmembrane pore through which chemical delivery occurs. An analytical model was formulated for the recurrent differential equations that convey the time-dependent swelling phase of a pulsatory liposome during individual cycles. We demonstrate that the time-dependent swelling phases of the last several cycles of a pulsatory liposome are strongly dependent on the size of the external bath. Furthermore, decreasing the size of the hypotonic medium reduces the number of cycles of a pulsatory liposome. Comparisons and contrasts of an infinite hypotonic bath with finite external baths of varying radii are discussed.
Collapse
Affiliation(s)
- Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Dumitru Popescu
- Department of Mathematical Modelling in Life Sciences, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie, nr.13, Bucharest Romania
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
4
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
5
|
Pazzi J, Xu M, Subramaniam AB. Size Distributions and Yields of Giant Vesicles Assembled on Cellulose Papers and Cotton Fabric. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7798-7804. [PMID: 30444125 DOI: 10.1021/acs.langmuir.8b03076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lamellar phospholipid stacks on cellulose paper vesiculate to form cell-like giant unilamellar vesicles (GUVs) in aqueous solutions. The sizes and yields of the GUVs that result and their relationship to the properties of the cellulose fibers are unknown. Here, we report the characteristics of GUVs produced on four different cellulose substrates, three disordered porous media consisting of randomly entangled cellulose fibers (high-purity cellulose filter papers of different effective porosities), and an ordered network of weaved cellulose fibers (cotton fabric). Large numbers of GUVs formed on all four substrates. This result demonstrates for the first time that GUVs form on cotton fabric. Despite differences in the effective porosities and the configuration of the cellulose fibers, all four substrates yielded populations of GUVs with similar distribution of diameters. The distribution of diameters of the GUVs had a single well-defined peak and a right tail. Ninety-eight percent of the GUVs had diameters less than the average diameter of the cellulose fibers (∼20 micrometers). Cotton fabric produced the highest yield of GUVs with the lowest sample-to-sample variation. Moreover, cotton fabric is reusable. Fabric used sequentially produced similar crops of GUVs at each cycle. At the end of the sequence, there was no apparent change in the cellulose fibers. Cellulose fibers thus promote the vesiculation of lamellar phospholipid stacks in aqueous solutions.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Melissa Xu
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
6
|
Emami S, Su WC, Purushothaman S, Ngassam VN, Parikh AN. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses. Biophys J 2018; 115:1942-1955. [PMID: 30366629 DOI: 10.1016/j.bpj.2018.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Collapse
Affiliation(s)
- Shiva Emami
- Departments of Biomedical Engineering, University of California, Davis, California; Chemical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Chemistry, University of California, Davis, California
| | - Sowmya Purushothaman
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Viviane N Ngassam
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Departments of Biomedical Engineering, University of California, Davis, California; Chemistry, University of California, Davis, California; Chemical Engineering, University of California, Davis, California; Materials Science & Engineering, University of California, Davis, California.
| |
Collapse
|
7
|
Effects of electroformation protocol parameters on quality of homogeneous GUV populations. Chem Phys Lipids 2018; 212:88-95. [DOI: 10.1016/j.chemphyslip.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
8
|
Chabanon M, Rangamani P. Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2032-2041. [PMID: 29572034 DOI: 10.1016/j.bbamem.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022]
Abstract
We establish a biophysical model for the dynamics of lipid vesicles exposed to surfactants. The solubilization of the lipid membrane due to the insertion of surfactant molecules induces a reduction of membrane surface area at almost constant vesicle volume. This results in a rate-dependent increase of membrane tension and leads to the opening of a micron-sized pore. We show that solubilization kinetics due to surfactants can determine the regime of pore dynamics: either the pores open and reseal within a second (short-lived pore), or the pore stays open up to a few minutes (long-lived pore). First, we validate our model with previously published experimental measurements of pore dynamics. Then, we investigate how the solubilization kinetics and membrane properties affect the dynamics of the pore and construct a phase diagram for short and long-lived pores. Finally, we examine the dynamics of sequential pore openings and show that cyclic short-lived pores occur with a period inversely proportional to the solubilization rate. By deriving a theoretical expression for the cycle period, we provide an analytical tool to estimate the solubilization rate of lipid vesicles by surfactants. Our findings shed light on some fundamental biophysical mechanisms that allow simple cell-like structures to sustain their integrity against environmental stresses, and have the potential to aid the design of vesicle-based drug delivery systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla 92093, CA, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla 92093, CA, USA.
| |
Collapse
|
9
|
Li A, Pazzi J, Xu M, Subramaniam AB. Cellulose Abetted Assembly and Temporally Decoupled Loading of Cargo into Vesicles Synthesized from Functionally Diverse Lamellar Phase Forming Amphiphiles. Biomacromolecules 2018; 19:849-859. [DOI: 10.1021/acs.biomac.7b01645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander Li
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Joseph Pazzi
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Melissa Xu
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
10
|
Su WC, Gettel DL, Chabanon M, Rangamani P, Parikh AN. Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents Induced by Colligative Nonideality. J Am Chem Soc 2018; 140:691-699. [DOI: 10.1021/jacs.7b10192] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Morgan Chabanon
- Department
of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Padmini Rangamani
- Department
of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
11
|
Chabanon M, Ho JCS, Liedberg B, Parikh AN, Rangamani P. Pulsatile Lipid Vesicles under Osmotic Stress. Biophys J 2017; 112:1682-1691. [PMID: 28445759 DOI: 10.1016/j.bpj.2017.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 11/25/2022] Open
Abstract
The response of lipid bilayers to osmotic stress is an important part of cellular function. Recent experimental studies showed that when cell-sized giant unilamellar vesicles (GUVs) are exposed to hypotonic media, they respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we establish a fundamental and quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions by advancing a comprehensive theoretical model of vesicle dynamics. The model quantitatively captures the experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate-dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further extract constitutional scaling relationships between the pulsatile dynamics and GUV properties over multiple timescales. Our findings provide a fundamental framework that has the potential to guide future investigations on the nonequilibrium dynamics of vesicles under osmotic stress.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - James C S Ho
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Atul N Parikh
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Departments of Biomedical Engineering and Chemical Engineering and Materials Science, University of California Davis, Davis, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
12
|
Park MC, Sukumar P, Kim SK, Kang JY, Manz A, Kim TS. Selective and vertical microfabrication of lipid tubule arrays on glass substrates using template-guided gentle hydration. LAB ON A CHIP 2016; 16:4732-4741. [PMID: 27813541 DOI: 10.1039/c6lc01095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Generally, asymmetric tubular lipid structures have been formed under the specific condition of gentle hydration or by using hydrodynamic and/or electrical elongation of vesicular lipid structures. Small-size lipid tubes are, however, very difficult to allocate or align in the vertical direction on the specific site of the substrate and, therefore, the ability to produce them selectively and in large quantities as an array form is limited. Herein, we propose an easy and novel method to fabricate selective and vertical lipid tube arrays using template-guided gentle hydration of dried lipid films without any external forces. A lipid solution was drop-dispensed onto a porous membrane and dried to form a lipid film. Then, the lipid-coated porous membrane was transferred to a glass substrate by using a UV-cured polymer layer to achieve tight bonding. Upon swelling with an appropriate buffer, expansion forces due to osmotic pressure during the gentle hydration process were highly constrained to confined pores, thereby resulting in the nucleation of tube-like lipid structures through the pores. Interestingly, according to the aspect ratio of pores (ARpore, pore length/pore diameter), different shapes of lipid structures, including vesicular, oval, and tube-like, were generated, which indicates the importance of the ARpore, as well as the pore diameter, during fabrication of tubular lipid structures. Also, this approach was easily modified with 1% chitosan to enhance the stability of the lipid tubes (>30 min in life time), by lipid coating twice and by using unsaturated lipids to increase tube length (>30 μm in length). Therefore, in the future, the simple but robust template-guided gentle hydration method will be a useful tool for fabricating addressable and engineered lipid tube arrays as a sensory unit.
Collapse
Affiliation(s)
- Min Cheol Park
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Pavithra Sukumar
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Kyung Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Andreas Manz
- Korea Institute of Science and Technology in Europe, 66123 Saarbrücken, Germany
| | - Tae Song Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Ho JCS, Rangamani P, Liedberg B, Parikh AN. Mixing Water, Transducing Energy, and Shaping Membranes: Autonomously Self-Regulating Giant Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2151-63. [PMID: 26866787 DOI: 10.1021/acs.langmuir.5b04470] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Giant lipid vesicles are topologically closed compartments bounded by semipermeable flexible shells, which isolate femto- to picoliter quantities of the aqueous core from the surrounding bulk. Although water equilibrates readily across vesicular walls (10(-2)-10(-3) cm(3) cm(-2) s(-1)), the passive permeation of solutes is strongly hindered. Furthermore, because of their large volume compressibility (∼10(9)-10(10) N m(-2)) and area expansion (10(2)-10(3) mN m(-1)) moduli, coupled with low bending rigidities (10(-19) N m), vesicular shells bend readily but resist volume compression and tolerate only a limited area expansion (∼5%). Consequently, vesicles experiencing solute concentration gradients dissipate the available chemical energy through the osmotic movement of water, producing dramatic shape transformations driven by surface-area-volume changes and sustained by the incompressibility of water and the flexible membrane interface. Upon immersion in a hypertonic bath, an increased surface-area-volume ratio promotes large-scale morphological remodeling, reducing symmetry and stabilizing unusual shapes determined, at equilibrium, by the minimal bending-energy configurations. By contrast, when subjected to a hypotonic bath, walls of giant vesicles lose their thermal undulation, accumulate mechanical tension, and, beyond a threshold swelling, exhibit remarkable oscillatory swell-burst cycles, with the latter characterized by damped, periodic oscillations in vesicle size, membrane tension, and phase behavior. This cyclical pattern of the osmotic influx of water, pressure, membrane tension, pore formation, and solute efflux suggests quasi-homeostatic self-regulatory behavior allowing vesicular compartments produced from simple molecular components, namely, water, osmolytes, and lipids, to sense and regulate their microenvironment in a negative feedback loop.
Collapse
Affiliation(s)
- James C S Ho
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University , Singapore 637553
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California-San Diego , La Jolla, California 92093, United States
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University , Singapore 637553
| | - Atul N Parikh
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University , Singapore 637553
- Departments of Biomedical Engineering and Chemical Engineering & Materials Science, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
14
|
Bending elasticity modulus of giant vesicles composed of aeropyrum pernix k1 archaeal lipid. Life (Basel) 2015; 5:1101-10. [PMID: 25821933 PMCID: PMC4500131 DOI: 10.3390/life5021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/08/2015] [Accepted: 03/19/2015] [Indexed: 01/11/2023] Open
Abstract
Thermally induced shape fluctuations were used to study elastic properties of giant vesicles composed of archaeal lipids C25,25-archetidyl (glucosyl) inositol and C25,25-archetidylinositol isolated from lyophilised Aeropyrum pernix K1 cells. Giant vesicles were created by electroformation in pure water environment. Stroboscopic illumination using a xenon flash lamp was implemented to remove the blur effect due to the finite integration time of the camera and to obtain an instant picture of the fluctuating vesicle shape. The mean weighted value of the bending elasticity modulus kc of the archaeal membrane determined from the measurements meeting the entire set of qualification criteria was (1.89 ± 0.18) × 10−19 J, which is similar to the values obtained for a membrane composed of the eukaryotic phospholipids SOPC (1.88 ± 0.17) × 10−19 J and POPC (2.00 ± 0.21) × 10−19 J. We conclude that membranes composed of archaeal lipids isolated from Aeropyrum pernix K1 cells have similar elastic properties as membranes composed of eukaryotic lipids. This fact, together with the importance of the elastic properties for the normal circulation through blood system, provides further evidence in favor of expectations that archaeal lipids could be appropriate for the design of drug delivery systems.
Collapse
|
15
|
Kralj-Iglič V. Membrane Microvesiculation and its Suppression. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Oglęcka K, Rangamani P, Liedberg B, Kraut RS, Parikh AN. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 2014; 3:e03695. [PMID: 25318069 PMCID: PMC4197780 DOI: 10.7554/elife.03695] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/19/2014] [Indexed: 01/14/2023] Open
Abstract
Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.
Collapse
Affiliation(s)
- Kamila Oglęcka
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Padmini Rangamani
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Rachel S Kraut
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Atul N Parikh
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|
17
|
Mally M, Peterlin P, Svetina S. Partitioning of oleic acid into phosphatidylcholine membranes is amplified by strain. J Phys Chem B 2013; 117:12086-94. [PMID: 24000876 DOI: 10.1021/jp404135g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partitioning of fatty acids into phospholipid membranes is studied on giant unilamellar vesicles (GUVs) utilizing phase-contrast microscopy. With use of a micropipet, an individual GUV is transferred from a vesicle suspension in a mixed glucose/sucrose solution into an isomolar glycerol solution with a small amount of oleic acid added. Oleic acid molecules intercalate into the phospholipid membrane and thus increase the membrane area, while glycerol permeates into the vesicle interior and thus via osmotic inflation causes an increase of the vesicle volume. The conditions are chosen at which a vesicle swells as a sphere. At sufficiently low oleic acid concentrations, when the critical membrane strain is reached, the membrane bursts and part of vesicle content is ejected, upon which the membrane reseals and the swelling commences again. The radius of the vesicle before and after the burst is determined at different concentrations of oleic acid in suspension. The results of our experiments show that the oleic acid partitioning increases when the membrane strain is increased. The observed behavior is interpreted on the basis of a tension-dependent intercalation of oleic acid into the membrane.
Collapse
Affiliation(s)
- Mojca Mally
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia , 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
18
|
Mikelj M, Praper T, Demič R, Hodnik V, Turk T, Anderluh G. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Anal Biochem 2013; 435:174-80. [DOI: 10.1016/j.ab.2013.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 12/24/2012] [Accepted: 01/02/2013] [Indexed: 01/10/2023]
|
19
|
Hain N, Gallego M, Reviakine I. Unraveling supported lipid bilayer formation kinetics: osmotic effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2282-2288. [PMID: 23311334 DOI: 10.1021/la304197m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solid-supported lipid bilayers are used as cell membrane models and form the basis of biomimetic and biosensor platforms. The mechanism of their formation from adsorbed liposomes is not well-understood. Using membrane-permeable solute glycerol, impermeable solutes sucrose and dextran, and a pore forming peptide melittin, we studied experimentally how osmotic effects affect the kinetics of the adsorbed liposome-to-bilayer transition. We find that its rate is enhanced if adsorbed liposomes are made permeable but is not significantly retarded by impermeable solutes. The results are explained in terms of adsorbed liposome deformation and formation of transmembrane pores.
Collapse
Affiliation(s)
- Nicole Hain
- CIC biomaGUNE, Paseo Miramón 182, San Sebastián 20009, Spain
| | | | | |
Collapse
|
20
|
Šimundić M, Drašler B, Šuštar V, Zupanc J, Štukelj R, Makovec D, Erdogmus D, Hägerstrand H, Drobne D, Kralj-Iglič V. Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Vet Res 2013; 9:7. [PMID: 23311901 PMCID: PMC3549938 DOI: 10.1186/1746-6148-9-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/08/2013] [Indexed: 01/28/2023] Open
Abstract
Background Massive industrial production of engineered nanoparticles poses questions about health risks to living beings. In order to understand the underlying mechanisms, we studied the effects of TiO2 and ZnO agglomerated engineered nanoparticles (EPs) on erythrocytes, platelet-rich plasma and on suspensions of giant unilamelar phospholipid vesicles. Results Washed erythrocytes, platelet-rich plasma and suspensions of giant unilamelar phospholipid vesicles were incubated with samples of EPs. These samples were observed by different microscopic techniques. We found that TiO2 and ZnO EPs adhered to the membrane of washed human and canine erythrocytes. TiO2 and ZnO EPs induced coalescence of human erythrocytes. Addition of TiO2 and ZnO EPs to platelet-rich plasma caused activation of human platelets after 24 hours and 3 hours, respectively, while in canine erythrocytes, activation of platelets due to ZnO EPs occurred already after 1 hour. To assess the effect of EPs on a representative sample of giant unilamelar phospholipid vesicles, analysis of the recorded populations was improved by applying the principles of statistical physics. TiO2 EPs did not induce any notable effect on giant unilamelar phospholipid vesicles within 50 minutes of incubation, while ZnO EPs induced a decrease in the number of giant unilamelar phospholipid vesicles that was statistically significant (p < 0,001) already after 20 minutes of incubation. Conclusions These results indicate that TiO2 and ZnO EPs cause erythrocyte aggregation and could be potentially prothrombogenic, while ZnO could also cause membrane rupture.
Collapse
Affiliation(s)
- Metka Šimundić
- Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
López-Montero I, López-Navajas P, Mingorance J, Vélez M, Vicente M, Monroy F. Membrane reconstitution of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipids: large membrane dilation and analysis of membrane plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:687-98. [PMID: 23149342 DOI: 10.1016/j.bbamem.2012.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/26/2012] [Accepted: 11/05/2012] [Indexed: 01/28/2023]
Abstract
During the division process of Escherichia coli, the globular protein FtsZ is early recruited at the constriction site. The Z-ring, based on FtsZ filaments associated to the inner cell membrane, has been postulated to exert constriction forces. Membrane anchoring is mediated by ZipA, an essential transmembrane protein able to specifically bind FtsZ. In this work, an artificial complex of FtsZ-ZipA has been reconstituted at the inner side of spherical giant unilamellar vesicles made of E. coli lipids. Under these conditions, FtsZ polymerization, triggered when a caged GTP analogue is UV-irradiated, was followed by up to 40% vesicle inflation. The homogeneous membrane dilation was accompanied by the visualization of discrete FtsZ assemblies at the membrane. Complementary rheological data revealed enhanced elasticity under lateral dilation. This explains why vesicles can undergo large dilations in the regime of mechanical stability. A mechanical role for FtsZ polymers as promoters of membrane softening and plasticization is hypothesized.
Collapse
Affiliation(s)
- I López-Montero
- Departamento de Química Física I, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Šuštar V, Zelko J, Lopalco P, Lobasso S, Ota A, Ulrih NP, Corcelli A, Kralj-Iglič V. Morphology, biophysical properties and protein-mediated fusion of archaeosomes. PLoS One 2012; 7:e39401. [PMID: 22792173 PMCID: PMC3391208 DOI: 10.1371/journal.pone.0039401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/22/2012] [Indexed: 12/22/2022] Open
Abstract
As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol) linked to glycerol exclusively with ether bonds. Giant vesicles (GVs) constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes) were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs) the main transition was detected at Tm = 34. 2°C with an enthalpy of ΔH = 0.68 kcal/mol, whereas in archaebacterial GVs (MLVs) we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I – mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10−8 J/m2. In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers.
Collapse
Affiliation(s)
- Vid Šuštar
- Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jasna Zelko
- Laboratory of Clinical Biophysics, Chair of Orthopaedics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Patrizia Lopalco
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | - Ajda Ota
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Angela Corcelli
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
- IPCF-CNR, Bari, Italy
| | - Veronika Kralj-Iglič
- Biomedical Research Group, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
23
|
Peterlin P, Arrigler V, Diamant H, Haleva E. Permeability of Phospholipid Membrane for Small Polar Molecules Determined from Osmotic Swelling of Giant Phospholipid Vesicles. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-396534-9.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
24
|
Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci U S A 2011; 108:21016-21. [PMID: 22173634 DOI: 10.1073/pnas.1107473108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytotoxic cell granule secretory pathway is essential for immune defence. How the pore-forming protein perforin (PFN) facilitates the cytosolic delivery of granule-associated proteases (granzymes) remains enigmatic. Here we show that PFN is able to induce invaginations and formation of complete internal vesicles in giant unilamellar vesicles. Formation of internal vesicles depends on native PFN and calcium and antibody labeling shows the localization of PFN at the invaginations. This vesiculation is recapitulated in large unilamellar vesicles and in this case PFN oligomers can be seen associated with the necks of the invaginations. Capacitance measurements show PFN is able to increase a planar lipid membrane surface area in the absence of pore formation, in agreement with the ability to induce invaginations. Finally, addition of PFN to Jurkat cells causes the formation of internal vesicles prior to pore formation. PFN is capable of triggering an endocytosis-like event in addition to pore formation, suggesting a new paradigm for its role in delivering apoptosis-inducing granzymes into target cells.
Collapse
|
25
|
Okumura Y, Oana S. Effect of counter electrode in electroformation of giant vesicles. MEMBRANES 2011; 1:345-53. [PMID: 24957873 PMCID: PMC4021877 DOI: 10.3390/membranes1040345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/10/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs), from egg yolk phosphatidylcholine, was examined varying the shape of the counter electrode. Instead of a planar ITO (indium tin oxide) electrode commonly used, platinum wire mesh was employed as a counter electrode facing lipid deposit on a planar formation electrode. The modification did not significantly alter GV formation, and many GVs of 30–50 μm, some as large as 100 μm, formed as with the standard setup, indicating that a counter electrode does not have to be a complete plane. When the counter electrode was reduced to a set of two parallel platinum wires, GV formation deteriorated. Some GVs formed, but only in close proximity to the counter electrode. Lower electric voltage with this setup no longer yielded GVs. Instead, a large onion-like multilamellar structure was observed. The deteriorated GV formation and the formation of a multilamellar structure seemed to indicate the weakened effect of the electric field on lipid deposit due to insufficient coverage with a small counter electrode. Irregular membranous objects formed by spontaneous swelling of lipid without electric voltage gradually turned into multilamellar structure upon following application of voltage. No particular enhancement of GV formation was observed when lipid deposit on a wire formation electrode was used in combination with a large planar counter electrode.
Collapse
Affiliation(s)
- Yukihisa Okumura
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Shuuhei Oana
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
26
|
Okumura Y, Sugiyama T. Electroformation of giant vesicles on a polymer mesh. MEMBRANES 2011; 1:184-94. [PMID: 24957731 PMCID: PMC4021901 DOI: 10.3390/membranes1030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 11/16/2022]
Abstract
Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine under applied electric voltage was examined on a substrate of a polymer mesh placed between two planar indium tin oxide coated glass electrodes. Under appropriate conditions, GVs were formed in good yield on meshes of various polymer materials, namely, hydrophobic poly(propylene), poly(ethylene terephthalate), a carbon fiber/nylon composite, and relatively hydrophilic nylon. Arranging threads in a mesh structure with appropriate openings improved GV formation compared to simply increasing the number of threads. For optimal electroformation of GVs, the size and shape of a mesh opening were crucial. With a too large opening, GV formation deteriorated. When the sides of an opening were partially missing, GV formation did not occur efficiently. With an adequate opening, a deposited lipid solution could fill the opening, and a relatively uniform lipid deposit formed on the surface of threads after evaporation of the solvent. This could supply a sufficient amount of lipids to the opening and also prevent a lipid deposit from becoming too thick for electroformation. As a result, good GV formation was often observed in openings filled with swelled lipid.
Collapse
Affiliation(s)
- Yukihisa Okumura
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan.
| | - Takuya Sugiyama
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
27
|
Carlsen A, Glaser N, Le Meins JF, Lecommandoux S. Block copolymer vesicle permeability measured by osmotic swelling and shrinking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4884-90. [PMID: 21405067 DOI: 10.1021/la105045m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vesicle response to osmotic shock provides insight into membrane permeability, a highly relevant value for applications ranging from nanoreactor experimentation to drug delivery. The osmotic shock approach has been employed extensively to elucidate the properties of phospholipid vesicles (liposomes) and of varieties of polymer vesicles (polymersomes). This study seeks to compare the membrane response for two varieties of polymersomes, a comb-type siloxane surfactant, poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO), and a diblock copolymer, polybutadiene-b-poly(ethylene oxide) (PBut-b-PEO). Despite similar molecular weights and the same hydrophilic block (PEO), the two copolymers possess different hydrophobic blocks (PBut and PDMS) and corresponding glass transition temperatures (-31 and -123 °C, respectively). Dramatic variations in membrane response are observed during exposure to osmotic pressure differences, and values for polymer membrane permeability to water are extracted. We propose an explanation for the observed phenomena based on the respective properties of the PBut-b-PEO and PDMS-g-PEO membranes in terms of cohesion, thickness, and fluidity.
Collapse
Affiliation(s)
- Autumn Carlsen
- Université de Bordeaux, ENSCPB, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | | | |
Collapse
|
28
|
Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJC. Human perforin employs different avenues to damage membranes. J Biol Chem 2010; 286:2946-55. [PMID: 20889983 PMCID: PMC3024789 DOI: 10.1074/jbc.m110.169417] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perforin (PFN) is a pore-forming protein produced by cytotoxic lymphocytes that aids in the clearance of tumor or virus-infected cells by a mechanism that involves the formation of transmembrane pores. The properties of PFN pores and the mechanism of their assembly remain unclear. Here, we studied pore characteristics by functional and structural methods to show that perforin forms pores more heterogeneous than anticipated. Planar lipid bilayer experiments indicate that perforin pores exhibit a broad range of conductances, from 0.15 to 21 nanosiemens. In comparison with large pores that possessed low noise and remained stably open, small pores exhibited high noise and were very unstable. Furthermore, the opening step and the pore size were dependent on the lipid composition of the membrane. The heterogeneity in pore sizes was confirmed with cryo-electron microscopy and showed a range of sizes matching that observed in the conductance measurements. Furthermore, two different membrane-bound PFN conformations were observed, interpreted as pre-pore and pore states of the protein. The results collectively indicate that PFN forms heterogeneous pores through a multistep mechanism and provide a new paradigm for understanding the range of different effects of PFN and related membrane attack complex/perforin domain proteins observed in vivo and in vitro.
Collapse
Affiliation(s)
- Tilen Praper
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Peterlin P. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field. J Biol Phys 2010; 36:339-54. [PMID: 21886342 PMCID: PMC2923700 DOI: 10.1007/s10867-010-9187-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/22/2010] [Indexed: 11/26/2022] Open
Abstract
A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19-L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed.
Collapse
Affiliation(s)
- Primož Peterlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Lipičeva 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Wang JY, Chin J, Marks JD, Lee KYC. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12953-61. [PMID: 20666423 PMCID: PMC2929000 DOI: 10.1021/la101841a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, the Institute for Biophysical Dynamics & the James Franks Institute, Chicago, Illinois 60637, USA
| | - Jaemin Chin
- Department of Chemistry, the Institute for Biophysical Dynamics & the James Franks Institute, Chicago, Illinois 60637, USA
| | - Jeremy D. Marks
- Department of Pediatrics, the University of Chicago, Chicago, Illinois 60637, USA
| | - Ka Yee C. Lee
- Department of Chemistry, the Institute for Biophysical Dynamics & the James Franks Institute, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Politano TJ, Froude VE, Jing B, Zhu Y. AC-electric field dependent electroformation of giant lipid vesicles. Colloids Surf B Biointerfaces 2010; 79:75-82. [DOI: 10.1016/j.colsurfb.2010.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/03/2010] [Accepted: 03/24/2010] [Indexed: 11/29/2022]
|
32
|
Brändén M, Tabaei SR, Fischer G, Neutze R, Höök F. Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes. Biophys J 2010; 99:124-33. [PMID: 20655840 PMCID: PMC2895391 DOI: 10.1016/j.bpj.2010.03.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 11/28/2022] Open
Abstract
Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore.
Collapse
Affiliation(s)
- Magnus Brändén
- Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Seyed R. Tabaei
- Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Gerhard Fischer
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Höök
- Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
33
|
Walde P, Cosentino K, Engel H, Stano P. Giant Vesicles: Preparations and Applications. Chembiochem 2010; 11:848-65. [DOI: 10.1002/cbic.201000010] [Citation(s) in RCA: 556] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Niri VH, Flatt BK, Fakhraai Z, Forrest JA. Simultaneous monitoring of electroformation of phospholipid vesicles by quartz crystal microbalance and optical microscopy. Chem Phys Lipids 2010; 163:36-41. [PMID: 19883636 DOI: 10.1016/j.chemphyslip.2009.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/19/2022]
Abstract
The electroformation of giant vesicles from 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) and optical microscopy, simultaneously using a novel sample cell design. A gold-coated QCM crystal was used as one of the electrodes and an Indium-tin-oxide (ITO)-coated glass slide was used as the second electrode for electroformation. Increases in the frequency and decreases in the dissipation were observed immediately upon voltage application between the two electrodes, indicating the loss of lipid from the QCM surface. Concurrently, we observed vesicles on the QCM electrode surface by differential interference contrast (DIC)-optical microscopy. The lipid-coated substrates were measured with AFM at various stages in the electroformation, and a significant change in the morphology of the lipid film was observed. Ellipsometry was used to find the average thickness of lipid film. The QCM data were fitted to a viscoelastic model to determine the viscoelastic properties and time dependence of the film thickness. All methods used to determine film thickness give values in reasonable quantitative agreement. Differences between the methods are consistent with what one might expect due to what is actually measured in the individual techniques. The comparison between mass loss and observed vesicles suggest that the vesicles formed are first localized to the substrate and then slowly released into the solution. By comparing the mass lost from the lipid film, to the total surface area of lipid vesicles observed, it is apparent that only a relatively small fraction of the lipid goes into the production of unilamellar vesicles with sizes detectable with optical microscopy.
Collapse
Affiliation(s)
- V H Niri
- Department of Physics and Guelph-Waterloo Physics Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
35
|
Ohno M, Hamada T, Takiguchi K, Homma M. Dynamic behavior of giant liposomes at desired osmotic pressures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11680-11685. [PMID: 19725557 DOI: 10.1021/la900777g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To apply accurate and uniform osmotic pressures to liposomes, they can be formed using the spontaneous transfer method in solutions with different osmolarities. The majority of liposomes unexpectedly opened large holes (several micrometers in diameter) in response to the osmotic pressure regardless of its strength, that is, the difference between the outside and inside solute (sucrose or KCl) concentrations. However, the lag time for any response, including the opening of a hole, after the formation of the liposome decreased with increasing osmotic pressure.
Collapse
Affiliation(s)
- Masae Ohno
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
36
|
Horger KS, Estes DJ, Capone R, Mayer M. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J Am Chem Soc 2009; 131:1810-9. [PMID: 19154115 PMCID: PMC2757642 DOI: 10.1021/ja805625u] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the presence of an electric field or specialized lipids; it generated giant liposomes from pure phosphatidylcholine lipids or from lipid mixtures that contained cholesterol or negatively charged lipids. Hybrid films of agarose and lipids even enabled the formation of giant liposomes in PBS from lipid compositions that are typically problematic for liposome formation, such as pure phosphatidylserine, pure phosphatidylglycerol, and asolectin. This paper discusses biophysical aspects of the formation of giant liposomes from hybrid films of agarose and lipids in comparison to established methods and shows that gentle hydration of hybrid films of agarose and lipids is a simple, rapid, and reproducible procedure to generate giant liposomes of various lipid compositions in solutions of physiologic ionic strength without the need for specialized equipment.
Collapse
Affiliation(s)
- Kim S. Horger
- Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109
| | - Daniel J. Estes
- Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109
| | - Ricardo Capone
- Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109
| | - Michael Mayer
- Departments of Chemical Engineering and Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109
| |
Collapse
|
37
|
Haleva E, Diamant H. Critical swelling of particle-encapsulating vesicles. PHYSICAL REVIEW LETTERS 2008; 101:078104. [PMID: 18764583 DOI: 10.1103/physrevlett.101.078104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Indexed: 05/26/2023]
Abstract
We consider a ubiquitous scenario where a fluctuating, semipermeable vesicle is embedded in solution while enclosing a fixed number of solute particles. The swelling with increasing number of particles or decreasing concentration of the outer solution exhibits a continuous phase transition from a fluctuating state to the maximum-volume configuration, whereupon appreciable pressure difference and surface tension build up. This criticality is unique to particle-encapsulating vesicles, whose volume and inner pressure both fluctuate. It implies a universal swelling behavior of such vesicles as they approach their limiting volume and osmotic lysis.
Collapse
Affiliation(s)
- Emir Haleva
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
38
|
Haleva E, Diamant H. Swelling of particle-encapsulating random manifolds. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:021132. [PMID: 18850811 DOI: 10.1103/physreve.78.021132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Indexed: 05/26/2023]
Abstract
We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems: a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one, whereas in the latter it is not.
Collapse
Affiliation(s)
- Emir Haleva
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|