1
|
Bordini EAF, Ferreira JA, Dubey N, Ribeiro JS, de Souza Costa CA, Soares DG, Bottino MC. Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS APPLIED BIO MATERIALS 2021; 4:6993-7006. [PMID: 35006932 DOI: 10.1021/acsabm.1c00620] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Engineering multifunctional hydrogel systems capable of amplifying the regenerative capacity of endogenous progenitor cells via localized presentation of therapeutics under tissue inflammation is central to the translation of effective strategies for hard tissue regeneration. Here, we loaded dexamethasone (DEX), a pleotropic drug with anti-inflammatory and mineralizing abilities, into aluminosilicate clay nanotubes (halloysite clay nanotubes (HNTs)) to engineer an injectable multifunctional drug delivery system based on photo-cross-linkable gelatin methacryloyl (GelMA) hydrogel. In detail, a series of hydrogels based on GelMA formulations containing distinct amounts of DEX-loaded nanotubes was analyzed for physicochemical and mechanical properties and kinetics of DEX release as well as compatibility with mesenchymal stem cells from human exfoliated deciduous teeth (SHEDs). The anti-inflammatory response and mineralization potential of the engineered hydrogels were determined in vitro and in vivo. DEX conjugation with HNTs was confirmed by FTIR analysis. The incorporation of DEX-loaded nanotubes enhanced the mechanical strength of GelMA with no effect on its degradation and swelling ratio. Scanning electron microscopy (SEM) images demonstrated the porous architecture of GelMA, which was not significantly altered by DEX-loaded nanotubes' (HNTs/DEX) incorporation. All GelMA formulations showed cytocompatibility with SHEDs (p < 0.05) regardless of the presence of HNTs or HNTs/DEX. However, the highest osteogenic cell differentiation was noticed with the addition of HNT/DEX 10% in GelMA formulations (p < 0.01). The controlled release of DEX over 7 days restored the expression of alkaline phosphatase and mineralization (p < 0.0001) in lipopolysaccharide (LPS)-stimulated SHEDs in vitro. Importantly, in vivo data revealed that DEX-loaded nanotube-modified GelMA (5.0% HNT/DEX 10%) led to enhanced bone formation after 6 weeks (p < 0.0001) compared to DEX-free formulations with a minimum localized inflammatory response after 7 days. Altogether, our findings show that the engineered DEX-loaded nanotube-modified hydrogel may possess great potential to trigger in situ mineralized tissue regeneration under inflammatory conditions.
Collapse
Affiliation(s)
- Ester A F Bordini
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Carlos A de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, Universidade Estadual Paulista (UNESP), 1680 Humaitá Street, Araraquara, Sao Paulo 14801-903, Brazil
| | - Diana G Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, Sao Paulo University (USP), Al. Dr. Octavio Pinheiro Brizola, 9-75, Bauru, Sao Paulo 17012-901, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, Michigan 48109, United States.,Department of Biomedical Engineering, College of Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Le Saux G, Wu MC, Toledo E, Chen YQ, Fan YJ, Kuo JC, Schvartzman M. Cell-Cell Adhesion-Driven Contact Guidance and Its Effect on Human Mesenchymal Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22399-22409. [PMID: 32323968 DOI: 10.1021/acsami.9b20939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contact guidance has been extensively explored using patterned adhesion functionalities that predominantly mimic cell-matrix interactions. Whether contact guidance can also be driven by other types of interactions, such as cell-cell adhesion, still remains a question. Herein, this query is addressed by engineering a set of microstrip patterns of (i) cell-cell adhesion ligands and (ii) segregated cell-cell and cell-matrix ligands as a simple yet versatile set of platforms for the guidance of spreading, adhesion, and differentiation of mesenchymal stem cells. It was unprecedently found that micropatterns of cell-cell adhesion ligands can induce contact guidance. Surprisingly, it was found that patterns of alternating cell-matrix and cell-cell strips also induce contact guidance despite providing a spatial continuum for cell adhesion. This guidance is believed to be due to the difference between the potencies of the two adhesions. Furthermore, patterns that combine the two segregated adhesion functionalities were shown to induce more human mesenchymal stem cell osteogenic differentiation than monofunctional patterns. This work provides new insight into the functional crosstalk between cell-cell and cell-matrix adhesions and, overall, further highlights the ubiquitous impact of the biochemical anisotropy of the extracellular environment on cell function.
Collapse
Affiliation(s)
- Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Furst AL, Klass SH, Francis MB. DNA Hybridization to Control Cellular Interactions. Trends Biochem Sci 2019; 44:342-350. [DOI: 10.1016/j.tibs.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022]
|
4
|
Wang S, Li J, Zhou Z, Zhou S, Hu Z. Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces. Molecules 2018; 24:E75. [PMID: 30587800 PMCID: PMC6337445 DOI: 10.3390/molecules24010075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Cells are the smallest living units of a human body's structure and function, and their behaviors should not be ignored in human physiological and pathological metabolic activities. Each cell has a different scale, and presents distinct responses to specific scales: Vascular endothelial cells may obtain a normal function when regulated by the 25 µm strips, but de-function if the scale is removed; stem cells can rapidly proliferate on the 30 nm scales nanotubes surface, but stop proliferating when the scale is changed to 100 nm. Therefore, micro and nano scales play a crucial role in directing cell behaviors on biomaterials surface. In recent years, a series of biomaterials surface with micro and/or nano scales, such as micro-patterns, nanotubes and nanoparticles, have been developed to control the target cell behavior, and further enhance the surface biocompatibility. This contribution will introduce the related research, and review the advances in the micro/nano scales for biomaterials surface functionalization.
Collapse
Affiliation(s)
- Shuo Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zixiao Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sheng Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenqing Hu
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Wang Z, Zhou R, Wen F, Zhang R, Ren L, Teoh SH, Hong M. Reliable laser fabrication: the quest for responsive biomaterials surface. J Mater Chem B 2018; 6:3612-3631. [DOI: 10.1039/c7tb02545a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review presents current efforts in laser fabrication, focusing on the surface features of biomaterials and their biological responses; this provides insight into the engineering of bio-responsive surfaces for future medical devices.
Collapse
Affiliation(s)
- Zuyong Wang
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Rui Zhou
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Feng Wen
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Rongkai Zhang
- The Third Affiliated Hospital of Southern Medical University
- Guangzhou 510630
- P. R. China
| | - Lei Ren
- College of Materials Science
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Swee Hin Teoh
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
- School of Chemical and Biomedical Engineering
| | - Minghui Hong
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
- Department of Electrical and Computer Engineering
| |
Collapse
|
6
|
Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing RGD onto liquid crystal substrate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:973-981. [DOI: 10.1016/j.msec.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/01/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
|
7
|
Kim EY, Tripathy N, Cho SA, Joo CK, Lee D, Khang G. Bioengineered neo-corneal endothelium using collagen type-I coated silk fibroin film. Colloids Surf B Biointerfaces 2015; 136:394-401. [PMID: 26433646 DOI: 10.1016/j.colsurfb.2015.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Corneal transplantation, a common surgical protocol for visual acuity improvement, is limited owing to shortage of high quality donor corneas and/or lack of accurate replication of structural and biochemical composition of native cornea in a scaffold. Construction of neo-corneas utilizing novel, biocompatible and biodegradable scaffold/film source, could possibly address such formidable challenges. Herein, we designed optically transparent, micro-structurally stable silk films surface-coated with collagen type-I (Col-I/SF) as an alternative scaffold source for bioengineering of neo-cornea. Morphological, structural characteristics and in vitro biological studies were performed using primary rabbit corneal endothelial cells (rCEnCs) as models. The Col-I/SF films demonstrated higher Ra (nm) values compared to the bare SF surfaces. In vitro biological studies showed a significant increment in initial cell attachment and proliferation of cultured rCEnCs on the Col-I/SF films with well-maintained characteristic polygonal shape of rCEnCs. Although any remarkable changes regarding the morphology, expression of ZO-1 and Na(+)/K(+)-ATPase were absent, however the cells were found to be capable of well-expressing their functional proteins which regulates functions of corneal endothelium. Collectively, these results strongly suggest Col-I/SF film for future corneal transplantation therapy.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of BIN Fusion Technology, Department of PolymerNano Science & Polymer BIN Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Fusion Technology, Department of PolymerNano Science & Polymer BIN Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Sun Ah Cho
- Department of BIN Fusion Technology, Department of PolymerNano Science & Polymer BIN Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Gangnam St. Mary Hospital, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Dongwon Lee
- Department of BIN Fusion Technology, Department of PolymerNano Science & Polymer BIN Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of PolymerNano Science & Polymer BIN Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
8
|
Madhurakkat Perikamana SK, Lee J, Lee YB, Shin YM, Lee EJ, Mikos AG, Shin H. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules 2015; 16:2541-55. [DOI: 10.1021/acs.biomac.5b00852] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sajeesh Kumar Madhurakkat Perikamana
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jinkyu Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yu Bin Lee
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Young Min Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| | - Esther J. Lee
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Antonios G. Mikos
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Heungsoo Shin
- Department
of Bioengineering, Institute for Bioengineering and Biopharmaceutical
Research, Hanyang University, Seoul 133-791, Republic of Korea
- BK21
Plus Future Biopharmaceutical Human Resources Training and Research
Team, Hanyang University, Seoul 133-791, Republic of Korea
| |
Collapse
|
9
|
Huang YS, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, De Pauw-Gillet MC, Durrieu MC. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS One 2014; 9:e114973. [PMID: 25501012 PMCID: PMC4263720 DOI: 10.1371/journal.pone.0114973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022] Open
Abstract
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient's age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.
Collapse
Affiliation(s)
- Yi-Shiang Huang
- Departments of Chemistry & Bio-Medical and Preclinical Sciences, Mass Spectrometry Laboratory & Mammalian Cell Culture Laboratory – GIGA R, Université de Liège, Liège, Belgium
- CBMN UMR5248, Institute of Chemistry & Biology of Membranes & Nanoobjects, Université de Bordeaux, Pessac, France
| | - Virginie Bertrand
- Departments of Chemistry & Bio-Medical and Preclinical Sciences, Mass Spectrometry Laboratory & Mammalian Cell Culture Laboratory – GIGA R, Université de Liège, Liège, Belgium
| | | | | | - Christine Labrugère
- PLACAMAT, Plateforme Aquitaine de Caractérisation des Matériaux, UMS 3626, Université de Bordeaux, Pessac, France
| | - Edwin De Pauw
- Departments of Chemistry & Bio-Medical and Preclinical Sciences, Mass Spectrometry Laboratory & Mammalian Cell Culture Laboratory – GIGA R, Université de Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Departments of Chemistry & Bio-Medical and Preclinical Sciences, Mass Spectrometry Laboratory & Mammalian Cell Culture Laboratory – GIGA R, Université de Liège, Liège, Belgium
| | - Marie-Christine Durrieu
- CBMN UMR5248, Institute of Chemistry & Biology of Membranes & Nanoobjects, Université de Bordeaux, Pessac, France
| |
Collapse
|
10
|
Ye F, Ma B, Gao J, Xie L, Wei C, Jiang J. Fabrication of polyHEMA grids by micromolding in capillaries for cell patterning and single-cell arrays. J Biomed Mater Res B Appl Biomater 2014; 103:1375-80. [PMID: 25389043 DOI: 10.1002/jbm.b.33300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/16/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
Abstract
Control of cell adhesion and growth by microfabrication technology and surface chemistry is important in an increasing number of applications in biotechnology and medicine. In this study, we developed a method to fabricate (2-hydroxyethyl methacrylate) (polyHEMA) grids on glass by micromolding in capillaries (MIMIC). As a non-fouling biomaterial, polyHEMA was used to inhibit the nonspecific bonding of cells, whereas the glass surface provided a cell adhesive background. The polyHEMA chemical barrier was directly obtained using MIMIC without surface modification, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane (PDMS)mold and the glass. After fabrication of the polyHEMA micropattern, individual cytophilic microwells surrounded by cytophobic sidewalls were presented on the glass surface. The polyHEMA micropattern proved effective in controlling the shape and spreading of cells, and square-shaped mouse osteoblast MC3T3-E1 cells were obtained in microwell arrays after incubation for 3 days. Moreover, the widths of the microwells in this micropattern were optimized for use as single-cell arrays. The proposed method could be a convenient tool in the field of drug screening, stem cell research, and tissue engineering.
Collapse
Affiliation(s)
- Fang Ye
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Binghe Ma
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jie Gao
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Xie
- Key Laboratory of Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Chen Wei
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jin Jiang
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education and School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
11
|
Jeon H, Simon CG, Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 2014; 102:1580-94. [DOI: 10.1002/jbm.b.33158] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- HoJun Jeon
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| | - Carl G. Simon
- Biosystems and Biomaterials Division; National Institute of Standards and Technology; Gaithersburg Maryland
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
12
|
Kumar VA, Martinez AW, Caves JM, Naik N, Haller CA, Chaikof EL. Microablation of collagen-based substrates for soft tissue engineering. Biomed Mater 2014; 9:011002. [PMID: 24457193 DOI: 10.1088/1748-6041/9/1/011002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Noting the abundance and importance of collagen as a biomaterial, we have developed a facile method for the production of a dense fibrillar extracellular matrix mimicking collagen-elastin hybrids with tunable mechanical properties. Through the use of excimer-laser technology, we have optimized conditions for the ablation of collagen lamellae without denaturation of protein, maintenance of fibrillar ultrastructure and preservation of native D-periodicity. Strengths of collagen-elastin hybrids ranged from 0.6 to 13 MPa, elongation at break from 9 to 70% and stiffness from 2.9 to 94 MPa, allowing for the design of a wide variety of tissue specific scaffolds. Further, large (centimeter scale) lamellae can be fabricated and embedded with recombinant elastin to generate collagen-elastin hybrids. Exposed collagen in hybrids act as cell adhesive sites for rat mesenchymal stem cells that conform to ablate waveforms. The ability to modulate these features allows for the generation of a class of biopolymers that can architecturally and physiologically replicate native tissue.
Collapse
Affiliation(s)
- Vivek A Kumar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA. Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lei Y, Zouani OF, Rami L, Chanseau C, Durrieu MC. Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1086-1095. [PMID: 23161822 DOI: 10.1002/smll.201202410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 06/01/2023]
Abstract
How endothelial cells (ECs) express the particular filopodial or lamellipodial form of the actin machinery is critical to understanding EC functions such as angiogenesis and sprouting. It is not known how these mechanisms coordinately promote lumen formation of ECs. Here, adhesion molecules (RGD peptides) and inductor molecules (BMP-2 mimetic peptides) are micropatterned onto polymer surfaces by a photolithographic technique to induce filopodial and lamellipodial migration modes. Firstly, the effects of peptide microgeometrical distribution on EC adhesion, orientation and morphogenesis are evaluated. Large micropatterns (100 μm) promote EC orientation without lumen formation, whereas small micropatterns (10-50 μm) elicit a collective cell organization and induce EC lumen formation, in the case of RGD peptides. Secondly, the correlation between EC actin machinery expression and EC self-assembly into lumen formation is addressed. Only the filopodial migration mode (mimicked by RGD) but not lamellipodial migration mode (mimicked by BMP-2) promotes EC lumen formation. This work gives a new concept for the design of biomaterials for tissue engineering and may provide new insight for angiogenesis inhibition on tumors.
Collapse
Affiliation(s)
- Yifeng Lei
- Université Bordeaux 1-CNRS, UMR5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac, France.
| | | | | | | | | |
Collapse
|
14
|
Chollet C, Bareille R, Rémy M, Guignandon A, Bordenave L, Laroche G, Durrieu MC. Impact of Peptide Micropatterning on Endothelial Cell Actin Remodeling for Cell Alignment under Shear Stress. Macromol Biosci 2012; 12:1648-59. [DOI: 10.1002/mabi.201200167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/06/2012] [Indexed: 01/29/2023]
|
15
|
Boivin MC, Chevallier P, Hoesli CA, Lagueux J, Bareille R, Rémy M, Bordenave L, Durrieu MC, Laroche G. Human saphenous vein endothelial cell adhesion and expansion on micropatterned polytetrafluoroethylene. J Biomed Mater Res A 2012; 101:694-703. [DOI: 10.1002/jbm.a.34367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023]
|
16
|
Lei Y, Zouani OF, Rémy M, Ayela C, Durrieu MC. Geometrical microfeature cues for directing tubulogenesis of endothelial cells. PLoS One 2012; 7:e41163. [PMID: 22829923 PMCID: PMC3400641 DOI: 10.1371/journal.pone.0041163] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels by sprouting from pre-existing ones, is critical for the establishment and maintenance of complex tissues. Angiogenesis is usually triggered by soluble growth factors such as VEGF. However, geometrical cues also play an important role in this process. Here we report the induction of angiogenesis solely by SVVYGLR peptide micropatterning on polymer surfaces. SVVYGLR peptide stripes were micropatterned onto polymer surfaces by photolithography to study their effects on endothelial cell (EC) behavior. Our results showed that the EC behaviors (cell spreading, orientation and migration) were significantly more guided and regulated on narrower SVVYGLR micropatterns (10 and 50 µm) than on larger stripes (100 µm). Also, EC morphogenesis into tube formation was switched on onto the smaller patterns. We illustrated that the central lumen of tubular structures can be formed by only one-to-four cells due to geometrical constraints on the micropatterns which mediated cell-substrate adhesion and generated a correct maturation of adherens junctions. In addition, sprouting of ECs and vascular networks were also induced by geometrical cues on surfaces micropatterned with SVVYGLR peptides. These micropatterned surfaces provide opportunities for mimicking angiogenesis by peptide modification instead of exogenous growth factors. The organization of ECs into tubular structures and the induction of sprouting angiogenesis are important towards the fabrication of vascularized tissues, and this work has great potential applications in tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Yifeng Lei
- INSERM U1026, Université Victor Segalen Bordeaux 2, Bordeaux, France
- CBMN, UMR CNRS 5248, Université Bordeaux 1, Pessac, France
- * E-mail: (YL); (OFZ)
| | - Omar F. Zouani
- INSERM U1026, Université Victor Segalen Bordeaux 2, Bordeaux, France
- CBMN, UMR CNRS 5248, Université Bordeaux 1, Pessac, France
- * E-mail: (YL); (OFZ)
| | - Murielle Rémy
- INSERM U1026, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Cédric Ayela
- IMS, UMR CNRS 5218, Université de Bordeaux, Talence, France
| | - Marie-Christine Durrieu
- INSERM U1026, Université Victor Segalen Bordeaux 2, Bordeaux, France
- CBMN, UMR CNRS 5248, Université Bordeaux 1, Pessac, France
| |
Collapse
|