1
|
Chen L, Jin Y, Guo S, Park E, Xie Y, Jung YM. Ag decoration on Na 2Ti 3O 7 nanowires for improved SERS and PHE performance. NANOSCALE 2023; 15:16287-16298. [PMID: 37721019 DOI: 10.1039/d3nr03994c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Na2Ti3O7 (NTO) is recognized as an authenticated promising photocatalyst and surface-enhanced Raman scattering (SERS) active material, although its performance is limited by its high carrier recombination rate, wide band gap and inadequate utilization of visible light. In this study, to solve these issues, sea urchin-shaped NTO nanowires directly grown on a substrate were fabricated, and then Ag nanoparticles were decorated on NTO nanowires using sputtering equipment. The as-prepared Ag-NTO substrates exhibited different morphologies and high SERS activity, which was confirmed by finite-difference time-domain (FDTD) simulations, showing that appropriate Ag decoration can bring more nanogaps and thus enhance the electromagnetic field (EM) contribution. We visualized the charge transfer (CT) mechanism in SERS and further investigated the catalytic hydrogen production process similarly induced by photogenerated CT. The optimal SERS substrate (Ag-NTO-3) was adopted to verify the photocatalytic hydrogen evolution (PHE) activity, and the hydrogen evolution rate of Ag-NTO-3 was 106.7 μmol h-1 (twice that of pristine NTO). Photoelectrochemical measurements and photoluminescence (PL) analysis were used to elucidate the potential enhancement mechanisms for the photocatalytic performance and CT process. This study can provide a valuable reference for performance and mechanism studies of SERS substrates and photocatalysts.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yang Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea.
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea.
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
2
|
Wang X, Zhu X, Tao Y, Zhang E, Ren X. ZnO nanorods decorated with Ag nanoflowers as a recyclable SERS substrate for rapid detection of pesticide residue in multiple-scenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122277. [PMID: 36592591 DOI: 10.1016/j.saa.2022.122277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pesticide residues threaten the ecological environment and human health. Therefore, developing high performance SERS substrate to achieve highly sensitive detection of pesticide residues is meaningful. In this study, based on the strategy of combining "hot spots" engineering and material hybridization, we construct a novel hybrid SERS substrate by depositing Ag nanoflowers (NFs) on ZnO nanorods (NRs). Benefiting from the synergistic effect of electromagnetic enhancement and charge transfer effect, the Ag NFs@ZnO NRs substrate exhibits a low detection limit (10-13 M) for crystal violet molecules. This SERS substrate has good uniformity with a relative standard deviation of 7.463 %. Besides, owning to the photocatalytic property of ZnO NRs, the hybrid substrate can degrade probe molecules after SERS detection and realize recyclability. As a demonstration, we employed our SERS substrate for the trace detection of pesticide residues on apple surface and in river water. This study provides a new idea for improving the SERS performance of hybrid substrates.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Erjin Zhang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
3
|
Adesoye S, Al Abdullah S, Nowlin K, Dellinger K. Mg-Doped ZnO Nanoparticles with Tunable Band Gaps for Surface-Enhanced Raman Scattering (SERS)-Based Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3564. [PMID: 36296754 PMCID: PMC9609255 DOI: 10.3390/nano12203564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Semiconductors have great potential as surface-enhanced Raman scattering (SERS) substrates due to their excellent physiochemical properties. However, they provide low signal enhancements relative to their plasmonic counterparts, which necessitates innovation in their synthesis and application. Substitutional atomic doping is proposed to improve SERS enhancement by controlling electronic properties, such as the band gap. In this work, zinc oxide (ZnO) nanoparticles were synthesized by co-precipitation and doped with magnesium (Mg) at concentrations ranging from 2-10%. Nanoparticle morphology and size were obtained by scanning electron microscopy (SEM). Elemental composition and chemical states were determined using X-ray photoelectron spectroscopy (XPS). Optical properties were obtained with a UV-vis spectrophotometer, while a Raman spectrometer was used to acquire Raman signal enhancements. Stability was assessed by UV-vis spectroscopy, while cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the absorption edge of Mg-doped ZnO nanoparticles was red-shifted compared to pure ZnO nanoparticles. The band gap decreased (3.3-3.01 eV) with increasing Mg doping, while the highest Raman enhancement was observed at 2% doping. No significant cytotoxic effects were observed at low concentrations (3-12 μg/mL). Overall, this study provides evidence for the tunability of ZnO substrates and may serve as a platform for applications in molecular biosensing.
Collapse
Affiliation(s)
- Samuel Adesoye
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| |
Collapse
|
4
|
ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based biosensing: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Ha Pham TT, Vu XH, Dien ND, Trang TT, Kim Chi TT, Phuong PH, Nghia NT. Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC Adv 2022; 12:7850-7863. [PMID: 35424719 PMCID: PMC8982176 DOI: 10.1039/d2ra00620k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Decorating two-dimensional (2D) nanomaterials with nanoparticles provides an effective method to integrate their physicochemical properties. In this work, we present the hydrothermal growth process of 2D zinc oxide nanoplates (ZnO NPls), then silver nanoparticles (AgNPs) were uniformly distributed on the surface of ZnO NPls through the reduction procedure of silver nitrate with sodium borohydride to create a metal-semiconductor hybrid. The amount of AgNPs on the ZnO NPls' surface was carefully controlled by varying the volume of silver nitrate (AgNO3) solution. Moreover, the effect of AgNPs on the surface-enhanced Raman scattering (SERS) property of ZnO NPls was thoroughly investigated by using methylene blue (MB) as the target molecule. After calculation, the maximum enhancement factor value for 10-4 M of MB reached 6.2 × 106 for the peak at 1436 cm-1 and the limit of detection was 10-9 M. In addition, the hybrid nanosystem could distinguish MB with good reproducibility over a wide range of concentrations, from 10-9 to 10-4 M. The SERS mechanism is well elucidated based on the chemical and electromagnetic mechanisms related to the synergism of ZnO and Ag in the enhancement of Raman signal. Abundant hot spots located at the gap between adjacent separate Ag nanoparticles and ZnO nanoplates which formed a strong local electromagnetic field and electron transfer between ZnO and Ag are considered to be the key factors affecting the SERS performance of our prepared ZnO/Ag substrates. In this research, we found high sensitivity of ZnO nanoplates/Ag nanoparticles in detecting MB molecules. This unique metal-semiconductor hybrid nanosystem is advantageous for the formation of Raman signals and is thus suitable for the trace detection of methylene blue.
Collapse
Affiliation(s)
- Thi Thu Ha Pham
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Nguyen Dac Dien
- Faculty of Labour Protection, Vietnam Trade Union University 169 Tay Son street Hanoi city Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| | - Pham Ha Phuong
- 31 Electro Mechanism and Explosive one Member Limited Liability Company Bai Bong ward Pho Yen Town Thai Nguyen Province Vietnam
| | - Nguyen Trong Nghia
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 100000 Vietnam
| |
Collapse
|
6
|
Zhang M, Jin C, Nie Y, Ren Y, Hao N, Xu Z, Dong L, Zhang JXJ. Silver nanoparticle on zinc oxide array for label-free detection of opioids through surface-enhanced raman spectroscopy. RSC Adv 2021; 11:11329-11337. [PMID: 35423637 PMCID: PMC8695809 DOI: 10.1039/d1ra00760b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Opioid abuse is a significant public health problem. Over two million Americans have some form of addiction to opioids; however, despite governmental programs established to treat overdoses and restrict opioid distribution, there are still few screening tools that are quantitative, portable and easy to use for high-throughput mapping and monitoring this ongoing crisis. In this paper, we demonstrated a plasmonic zinc oxide (ZnO) arrays-on-silicon sensor for the label-free detection of opioids through surface-enhanced Raman spectroscopy (SERS), and evaluated the chips' opioid sensing performance. Specifically, we tested our device with oxycodone, a potent and commonly abused opioid, dissolved in methanol and blood serum as a proof-of-concept study. Ag particles were in situ patterned onto the ZnO array to form the completed sensing platform. The resulting Ag@ZnO arrays were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDS), and element mapping. In addition, the enhanced electric field induced by the localized surface plasmonic resonance at the Ag particle decorated ZnO is simulated using COMSOL. Opioid-containing samples at varying concentrations, from 900 μg mL-1 to 90 ng mL-1 were tested using SERS to characterize the chip's accuracy and sensitivity. We demonstrated that the sensor can reliably detect opioid concentrations as low as 90 ng mL-1 with great accuracy and sensitivity even spiked into blood serum. The chips could provide a cost-effective, high-throughput method for detecting opiate oxycodone, thereby providing a powerful tool to monitor and control the emerging public health threats.
Collapse
Affiliation(s)
- Michael Zhang
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Congran Jin
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Yuan Nie
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Yundong Ren
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Nanjing Hao
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Zhe Xu
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| | - Lin Dong
- Mechanical and Industrial Engineering, New Jersey Institute of Technology Newark NJ USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth College Hanover NH USA
| |
Collapse
|
7
|
Karagoz S, Kiremitler NB, Sarp G, Pekdemir S, Salem S, Goksu AG, Onses MS, Sozdutmaz I, Sahmetlioglu E, Ozkara ES, Ceylan A, Yilmaz E. Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5678-5690. [PMID: 33492946 DOI: 10.1021/acsami.0c15606] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has clearly shown the importance of developments in fabrication of advanced protective equipment. This study investigates the potential of using multifunctional electrospun poly(methyl methacrylate) (PMMA) nanofibers decorated with ZnO nanorods and Ag nanoparticles (PMMA/ZnO-Ag NFs) in protective mats. Herein, the PMMA/ZnO-Ag NFs with an average diameter of 450 nm were simply prepared on a nonwoven fabric by directly electrospinning from solutions containing PMMA, ZnO nanorods, and Ag nanoparticles. The novel material showed high performance with four functionalities (i) antibacterial agent for killing of Gram-negative and Gram-positive bacteria, (ii) antiviral agent for inhibition of corona and influenza viruses, (iii) photocatalyst for degradation of organic pollutants, enabling a self-cleaning protective mat, and (iv) reusable surface-enhanced Raman scattering substrate for quantitative analysis of trace pollutants on the nanofiber. This multi-functional material has high potential for use in protective clothing applications by providing passive and active protection pathways together with sensing capabilities.
Collapse
Affiliation(s)
- Sultan Karagoz
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Department of Textile Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - N Burak Kiremitler
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Gokhan Sarp
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Sami Pekdemir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Samaa Salem
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ayşe Gencay Goksu
- Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| | - M Serdar Onses
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Ibrahim Sozdutmaz
- Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Ertugrul Sahmetlioglu
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38039, Turkey
- ChemicaMed Chemical Inc., Erciyes University Technology Development Zone, Kayseri 38039, Turkey
| | - Ergun Samet Ozkara
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
| | - Ahmet Ceylan
- Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Turkey
- Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri 38039, Turkey
- ChemicaMed Chemical Inc., Erciyes University Technology Development Zone, Kayseri 38039, Turkey
| |
Collapse
|
8
|
Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chem 2020; 337:127652. [PMID: 32799158 DOI: 10.1016/j.foodchem.2020.127652] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Deltamethrin, one of the most toxic pyrethroids, is commonly used to inhibit pests in wheat. However, the trace levels of deltamethrin in wheat is alarming to human health. In this study, surface-enhanced Raman spectroscopy (SERS)-active silver nanoparticles-plated-zinc oxide nanoflowers (Ag@ZnO NFs) nano-sensor were employed for rapid and sensitive quantification of deltamethrin in wheat. To sufficiently utilize the chemical-related information in SERS spectra, various spectral pretreatment and chemometric models were studied. The mean centering (MC) coupling successive projection algorithm-partial least squares regression (SPA-PLS) provided optimal predictive performance (correlation coefficient of prediction (Rp) = 0.9736 and residual predictive deviation (RPD) = 4.75). The proposed method achieved the limit of detection (LOD) = 0.16 μg·kg-1, the recovery of predicted results was in the range of 96.33-109.17% and the relative standard deviation (RSD) was < 5%. The overall results suggested that SERS based Ag@ZnO NFs combined with MC-SPA-PLS could be an easy and efficient method to quantify deltamethrin residue levels in wheat.
Collapse
|
9
|
Karthick Kannan P, Shankar P, Blackman C, Chung CH. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803432. [PMID: 30773698 DOI: 10.1002/adma.201803432] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/02/2019] [Indexed: 05/23/2023]
Abstract
Surface-enhanced Raman spectroscopy is a powerful and sensitive analytical tool that has found application in chemical and biomolecule analysis and environmental monitoring. Since its discovery in the early 1970s, a variety of materials ranging from noble metals to nanostructured materials have been employed as surface enhanced Raman scattering (SERS) substrates. In recent years, 2D inorganic materials have found wide use in the development of SERS-based chemical sensors owing to their unique thickness dependent physico-chemical properties with enhanced chemical-based charge-transfer processes. Here, recent advances in the application of various 2D inorganic nanomaterials, including graphene, boron nitride, semiconducting metal oxides, and transition metal chalcogenides, in chemical detection via SERS are presented. The background of the SERS concept, including its basic theory and sensing mechanism, along with the salient features of different nanomaterials used as substrates in SERS, extending from monometallic nanoparticles to nanometal oxides, is comprehensively discussed. The importance of 2D inorganic nanomaterials in SERS enhancement, along with their application toward chemical detection, is explained in detail with suitable examples and illustrations. In conclusion, some guidelines are presented for the development of this promising field in the future.
Collapse
Affiliation(s)
| | - Prabakaran Shankar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Innovative Science and Technology, Tokai University, Hiratsuka, Kanagawa, 259 1292, Japan
| | - Chris Blackman
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Lei PH, Yang CD, Huang PC, Yeh SJ. Enhancement of Light Extraction Efficiency for InGaN/GaN Light-Emitting Diodes Using Silver Nanoparticle Embedded ZnO Thin Films. MICROMACHINES 2019; 10:mi10040239. [PMID: 30974884 PMCID: PMC6523442 DOI: 10.3390/mi10040239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
Abstract
In this study, we propose a liquid-phase-deposited silver nanoparticle embedded ZnO (LPD-Ag NP/ZnO) thin film at room temperature to improve the light extraction efficiency (LEE) for InGaN/GaN light-emitting diodes (LEDs). The treatment solution for the deposition of the LPD-Ag/NP ZnO thin film comprised a ZnO-powder-saturated HCl and a silver nitrate (AgNO3) aqueous solution. The enhanced LEE of an InGaN/GaN LED with the LPD-Ag NP/ZnO window layer can be attributed to the surface texture and localized surface plasmon (LSP) coupling effect. The surface texture of the LPD-Ag/NP ZnO window layer relies on the AgNO3 concentration, which decides the root-mean-square (RMS) roughness of the thin film. The LSP resonance or extinction wavelength also depends on the concentration of AgNO3, which determines the Ag NP size and content of Ag atoms in the LPD-Ag NP/ZnO thin film. The AgNO3 concentration for the optimal LEE of an InGaN/GaN LED with an LPD-Ag NP/ZnO window layer occurs at 0.05 M, which demonstrates an increased light output intensity that is approximately 1.52 times that of a conventional InGaN/GaN LED under a 20-mA driving current.
Collapse
Affiliation(s)
- Po-Hsun Lei
- Institute of Electro-Optical and Material Science, National Formosa University, No. 64, Wunhua Rd., Huwei, Yunlin County 632, Taiwan.
| | - Chyi-Da Yang
- Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Po-Chun Huang
- Institute of Electro-Optical and Material Science, National Formosa University, No. 64, Wunhua Rd., Huwei, Yunlin County 632, Taiwan.
| | - Sheng-Jhan Yeh
- Institute of Electro-Optical and Material Science, National Formosa University, No. 64, Wunhua Rd., Huwei, Yunlin County 632, Taiwan.
| |
Collapse
|
11
|
Effects of Ag Doping Content and Dispersion on the Photocatalytic and Antibacterial Properties in ZnO Nanoparticles. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8275-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H. Three-Dimensional-Stacked Gold Nanoparticles with Sub-5 nm Gaps on Vertically Aligned TiO 2 Nanosheets for Surface-Enhanced Raman Scattering Detection Down to 10 fM Scale. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35607-35614. [PMID: 30232887 DOI: 10.1021/acsami.8b11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seeking for ultrasensitive and low-cost substrates is highly demandable for practical applications of surface-enhanced Raman scattering (SERS) technology. In this work, we report an ultrasensitive SERS-active substrate based on wet-chemistry-synthesized vertically aligned large-area TiO2 nanosheets (NSs) decorated by densely packed gold nanoparticles (Au NPs) with sub-5 nm gaps. Via a multistep successive deposition process, three-dimensional-stacked Au NPs sandwiched by a 3 nm SiO2 layer were assembled onto the TiO2 NS, enabling numerous hotspots due to the formation of both ultratiny plasmonic gaps and semiconductor/metal interfaces. Experimental results show that the fabricated substrate displays a detection limit down to 10 fM (10-14 M) without involving any condensation process by using the crystal violet as probe molecules. Control experiments and electromagnetic simulations indicate that the nanogaps defined by the 3 nm spacer are essential for the obtained excellent SERS performance. With its ultrasensitive detection capability, we demonstrate that the fabricated SERS substrate can be used for the trace analysis of melamine in milk.
Collapse
Affiliation(s)
| | - Xupeng Zhu
- School of Physics Science and Technology , Lingnan Normal University , Zhanjiang 524048 , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Lei PH, Chen IJ, Chen JJ, Yang PC, Gong YH. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(In)GaAs/Ge Solar Cells. MATERIALS 2018; 11:ma11061020. [PMID: 29914069 PMCID: PMC6025550 DOI: 10.3390/ma11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/03/2022]
Abstract
We synthesized a silver nanoparticle/zinc oxide (Ag NP/ZnO) thin film by using spin-coating technology. The treatment solution for Ag NP/ZnO thin film deposition contained zinc acetate (Zn(CH3COO)2), sodium hydroxide (NaOH), and silver nitrate (AgNO3) aqueous solutions. The crystalline characteristics, surface morphology, content of elements, and reflectivity of the Ag NPs/ZnO thin film at various concentrations of the AgNO3 aqueous solution were investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and ultraviolet–visible–near infrared spectrophotometry. The results indicated that the crystalline structure, Ag content, and reflectance of Ag NP/ZnO thin films depended on the AgNO3 concentration. Hybrid antireflection coatings (ARCs) composed of SiNx and Ag NPs/ZnO thin films with various AgNO3 concentrations were deposited on GaInP/(In)GaAs/Ge solar cells. We propose that the optimal ARC consists of SiNx and Ag NP/ZnO thin films prepared using a treatment solution of 0.0008 M AgNO3, 0.007 M Zn(CH3COO)2, and 1 M NaOH, followed by post-annealing at 200 °C. GaInP/(Al)GaAs/Ge solar cells with the optimal hybrid ARC and SiNx ARC exhibit a conversion efficiency of 34.1% and 30.2% with Voc = 2.39 and 2.4 V, Jsc = 16.63 and 15.37 mA/cm2, and fill factor = 86.1% and 78.8%.
Collapse
Affiliation(s)
- Po-Hsun Lei
- Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wen-Hwa Rd, Hu-Wei, Yun-Lin 623, Taiwan.
| | - I-Jen Chen
- Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wen-Hwa Rd, Hu-Wei, Yun-Lin 623, Taiwan.
| | - Jia-Jan Chen
- Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wen-Hwa Rd, Hu-Wei, Yun-Lin 623, Taiwan.
| | - Po-Chun Yang
- Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wen-Hwa Rd, Hu-Wei, Yun-Lin 623, Taiwan.
| | - Yan-Hua Gong
- Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wen-Hwa Rd, Hu-Wei, Yun-Lin 623, Taiwan.
| |
Collapse
|
14
|
Sheng P, Li W, Du P, Cao K, Cai Q. Multi-functional CuO nanowire/TiO 2 nanotube arrays photoelectrode synthesis, characterization, photocatalysis and SERS applications. Talanta 2016; 160:537-546. [DOI: 10.1016/j.talanta.2016.07.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
15
|
Shan Y, Yang Y, Cao Y, Fu C, Huang Z. Synthesis of wheatear-like ZnO nanoarrays decorated with Ag nanoparticles and its improved SERS performance through hydrogenation. NANOTECHNOLOGY 2016; 27:145502. [PMID: 26916627 DOI: 10.1088/0957-4484/27/14/145502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor/noble metal composite SERS substrates have been extensively studied due to their unique bifunctionality. In this work, wheatear-like ZnO nanoarrarys have been fabricated via a modified low-temperature solution method. The hierarchical nanostructures that are constructed by stacked nanoflakes and long whiskers of ZnO possess a substantial number of characteristic nano corners and edges, which are proved to be beneficial to deposit more Ag nanoparticles (NPs). Furthermore, hydrogenated wheatear-like ZnO/AgNP composite substrates are achieved via a safe and facile solid hydrogen source (NaBH4). The hydrogenated ZnO/AgNPs (H-ZnO/Ag) substrates exhibit greatly improved SERS activity in detecting R6G molecules with an enhancement factor (EF) up to ∼0.49 × 10(8), over two orders of magnitude higher than that of the substrates before hydrogenation. The outstanding SERS performance of wheatear-like H-ZnO/Ag substrates benefits from the emerging porous structure of ZnO and abundant surface defects introduced by hydrogenation. In addition, the as-prepared substrates also show high detection sensitivity, good repeatability and recyclability, indicating great potential for practical applications.
Collapse
Affiliation(s)
- Yufeng Shan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China. Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Meng A, Xing J, Li Z, Wei Q, Li Q. Ag/AgCl/ZnO nano-networks: Preparation, characterization, mechanism and photocatalytic activity. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2015.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Alayo N, Conde-Rubio A, Bausells J, Borrisé X, Labarta A, Batlle X, Pérez-Murano F. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography. NANOTECHNOLOGY 2015; 26:445302. [PMID: 26469372 DOI: 10.1088/0957-4484/26/44/445302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.
Collapse
Affiliation(s)
- Nerea Alayo
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao K, Lin J, Guo L. ZnO/Ag porous nanosheets used as substrate for surface-enhanced Raman scattering to detect organic pollutant. RSC Adv 2015. [DOI: 10.1039/c5ra06735a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Self-assembled porous ZnO nanosheets were fabricated through an one-step solvent method which is convenient and environmentally friendly, and then silver nanoparticles were deposited on to it to make a type of hybrid material.
Collapse
Affiliation(s)
- Kunyu Zhao
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Jie Lin
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- PR China
| | - Lin Guo
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- PR China
| |
Collapse
|
19
|
Huang Q, Liu S, Wei W, Yan Q, Wu C. Selective synthesis of different ZnO/Ag nanocomposites as surface enhanced Raman scattering substrates and highly efficient photocatalytic catalysts. RSC Adv 2015. [DOI: 10.1039/c5ra01068c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different ZnO–Ag nanocomposites with controlling SERS and photocatalytic performance were obtained only by adjusting solvents.
Collapse
Affiliation(s)
- Qingli Huang
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Shuangzhi Liu
- Chemistry and Engineering Department
- Kaifeng University
- Kaifeng 475004
- China
| | - Wenxian Wei
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Qiuxiang Yan
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| | - Changle Wu
- Testing Center
- Yangzhou University
- Yangzhou City
- China
| |
Collapse
|
20
|
Kandula S, Jeevanandam P. Sun-light-driven photocatalytic activity by ZnO/Ag heteronanostructures synthesized via a facile thermal decomposition approach. RSC Adv 2015. [DOI: 10.1039/c5ra14179f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ZnO/Ag heteronanostructures with good photocatalytic activity towards photodegradation of methylene blue have been synthesized using a facile thermal decomposition approach.
Collapse
Affiliation(s)
- Syam Kandula
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | | |
Collapse
|
21
|
Xie W, Schlücker S. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:116502. [PMID: 25373417 DOI: 10.1088/0034-4885/77/11/116502] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rationally designed multifunctional plasmonic nanostructures efficiently integrate two or more functionalities into a single entity, for example, with both plasmonic and catalytic activity. This review article is focused on their synthesis and use in surface-enhanced Raman scattering (SERS) as a molecular spectroscopic technique with high sensitivity, fingerprint specificity, and surface selectivity. After a short tutorial on the fundamentals of Raman scattering and SERS in particular, applications ranging from chemistry (heterogeneous catalysis) to biology and medicine (diagnostics/imaging, therapy) are summarized.
Collapse
Affiliation(s)
- Wei Xie
- Faculty of Chemistry, University of Duisburg-Essen, D-45141 Essen, Germany
| | | |
Collapse
|
22
|
Yang L, Li P, Liu J. Progress in multifunctional surface-enhanced Raman scattering substrate for detection. RSC Adv 2014. [DOI: 10.1039/c4ra09231g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Li Y, Wang Y, Liu L, Wang D, Zhang W. Ag/ZnO hollow sphere composites: reusable photocatalyst for photocatalytic degradation of 17α-ethinylestradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5177-5186. [PMID: 24390113 DOI: 10.1007/s11356-013-2133-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/02/2013] [Indexed: 06/03/2023]
Abstract
Characterizations of Ag/ZnO hollow sphere by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectra, and UV-vis absorption spectra have been made after its synthesis. The results showed that the composite was hollow structure with diameters of about 1-4 μm. The samples synthesized were tested and identified as silver doped ZnO, which have extended and boosted the spectral absorption. The photocatalytic activity of Ag/ZnO hollow spheres was assessed using 17α-ethinylestradiol aqueous solution under UV irradiation. It has been observed that the 17α-ethinylestradiol absorption efficiency and degradation rate is higher for Ag/ZnO hollow spheres. As reusable photocatalysts, Ag/ZnO hollow spheres which could be easily separated from a suspension will facilitate their application in wastewater treatment with enhanced photostability.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Satter SS, Hoque M, Rahman MM, Mollah MYA, Bin Hasan Susan MA. An approach towards the synthesis and characterization of ZnO@Ag core@shell nanoparticles in water-in-oil microemulsion. RSC Adv 2014. [DOI: 10.1039/c4ra01046a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water-in-oil microemulsions have been found to be good templates for synthesis of ZnO and ZnO@Ag nanoparticles and offered themselves as ideal ‘nanoreactors’ for uniform fabrication of core@shell nanoparticles.
Collapse
Affiliation(s)
- Shazia Sharmin Satter
- Department of Chemistry and Centre for Advanced Research in Sciences
- University of Dhaka
- Dhaka 1000, Bangladesh
| | - Mahfuzul Hoque
- Department of Chemistry and Centre for Advanced Research in Sciences
- University of Dhaka
- Dhaka 1000, Bangladesh
| | | | - M. Yousuf A. Mollah
- Department of Chemistry and Centre for Advanced Research in Sciences
- University of Dhaka
- Dhaka 1000, Bangladesh
| | - Md. Abu Bin Hasan Susan
- Department of Chemistry and Centre for Advanced Research in Sciences
- University of Dhaka
- Dhaka 1000, Bangladesh
| |
Collapse
|
25
|
|
26
|
Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0898-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|