1
|
Shah P, Patel M, Kansara Y, Vyas B, Prajapati P, Pradhan M, Jain S. Investigation of Mirabegron-loaded Nanostructured Lipid Carriers for Improved Bioabsorption: Formulation, Statistical Optimization, and In-Vivo Evaluation. AAPS PharmSciTech 2024; 25:222. [PMID: 39322792 DOI: 10.1208/s12249-024-02944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Overactive bladder (OAB) is a usual medical syndrome that affects the bladder, and Mirabegron (MBG) is preferred medicine for its control. Currently, available marketed formulations (MYRBETRIQ® granules and MYRBETRIQ® ER tablets) suffer from low bioavailability (29-35%) hampering their therapeutic effectiveness and compromising patient compliance. By creating MBG nanostructured lipid carriers (MBG-NLCs) for improved systemic availability and drug release, specifically in oral administration of OAB treatment, this study aimed to address these issues. MBG-NLCs were fabricated using a hot-melt ultrasonication technique. MBG-GMS; MBG-oleic acid interaction was assessed by in silico molecular docking. QbD relied on the concentration of Span 80 (X1) and homogenizer speed (X2) as critical material attribute (CMA) and critical process parameter (CPP) respectively, while critical quality attributes (CQA) such as particle size (Y1) and cumulative drug release at 24 h (Y2) were estimated as dependent variables. 32 factorial design was utilized to investigate the interconnection in variables that are dependent and independents. Optimized MBG-NLCs with a particle size of 194.4 ± 2.25 nm were suitable for lymphatic uptake. A PDI score of 0.275 ± 0.02 and zeta potential of -36.2 ± 0.721 mV indicated a uniform monodisperse system with stable dispersion properties. MBG-NLCs exhibited entrapment efficiency of 77.3 ± 1.17% and a sustained release in SIF of 94.75 ± 1.60% for 24 h. MBG-NLCs exhibited the Higuchi model with diffusion as a release mechanism. A pharmacokinetic study in Wistar rats exhibited a 1.67-fold higher bioavailability as compared to MBG suspension. Hence, MBG-NLCs hold promise for treating OAB by improving MBG's oral bio absorption.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India.
| | - Mansi Patel
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India
| | - Yashwini Kansara
- Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, 394350, Surat, Gujarat, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Pintu Prajapati
- Department Pharmaceutical Analysis & Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Madhulika Pradhan
- Department of Pharmaceutics, Gracious College of Pharmacy, Abhanpur, Chhattisgarh, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Punjab, India
| |
Collapse
|
2
|
Yuan M, Niu J, Li F, Ya H, Liu X, Li K, Fan Y, Zhang Q. Dipeptide-1 modified nanostructured lipid carrier-based hydrogel with enhanced skin retention and topical efficacy of curcumin. RSC Adv 2023; 13:29152-29162. [PMID: 37800130 PMCID: PMC10549242 DOI: 10.1039/d3ra04739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Topical administration of curcumin (CUR), a natural polyphenol with potent anti-inflammation and analgesic activities, provides a potential approach for local skin diseases. However, the drug delivery efficiency is highly limited by skin barriers and poor bioavailability of CUR. Herein, we propose hydrogel containing CUR-encapsulated dipeptide-1-modified nanostructured lipid carriers (CUR-DP-NLCs gel) to enhance topical drug delivery, and improve the topical therapeutic effect. The prepared CUR-DP-NLCs were characterized and were suitably dispersed into the Pluronic F127 hydrogel for topical application. The optimized CUR-DP-NLCs had a particle size of 152.6 ± 3.47 nm, a zeta potential of -33.1 ± 1.46 mV, an entrapment efficiency of 99.83 ± 0.14%, and a spherical morphology. X-ray diffraction (XRD) studies confirmed that CUR was successfully entrapped by the NLCs in an amorphous form. CUR-DP-NLCs gel exhibited sustained release over 48 h and significantly increased the skin retention of CUR. In vitro skin retention of CUR with CUR-DP-NLCs gel was 2.14 and 2.85 times higher than that of unmodified NLCs gel and free CUR, respectively. Fluorescence microscopy imaging revealed the formed nanoparticles accumulated in the hair follicles with prolonged retention time to form a drug reservoir. The hematoxylin-eosin staining showed that CUR-DP-NLCs gel could change the microstructure of skin layers and disturb the skin barriers. After topical administration to mice, CUR-DP-NLCs gel showed better analgesic and anti-inflammatory activities with no potentially hazardous skin irritation. These results concluded that CUR-DP-NLCs gel is a promising strategy to increase topical drug delivery of CUR in the treatment of local skin diseases.
Collapse
Affiliation(s)
- Ming Yuan
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Fei Li
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Keying Li
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| | - Qiuyan Zhang
- College of Food and Drug, Luoyang Normal University Luoyang Henan 471934 People's Republic of China
| |
Collapse
|
3
|
Du M, Yin J. Dual-Drug Nanosystem: Etoposide Prodrug and Cisplatin Coloaded Nanostructured Lipid Carriers for Lung Cancer Therapy. Drug Des Devel Ther 2022; 16:4139-4149. [PMID: 36506793 PMCID: PMC9733446 DOI: 10.2147/dddt.s386100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Cisplatin (CDDP) and etoposide (Etp) are recommended first-line therapy for lung cancer. Nanostructured lipid carriers (NLCs) are engineered to deliver drugs for lung cancer treatment. In the present study, NLCs were applied to coload an Etp prodrug (EtpP) and CDDP. Methods The Etp prodrug was synthesized by linking the phenolic hydroxyl group of Etp with polyethylene glycol (PEG). EtpP and CDDP coencapsulated NLCs (EtpP-CDDP NLCs) were prepared using film ultrasound. Cytotoxicity of drugs and drug-containing NLCs was assessed by evaluating cell viability using MTT assays. In vivo antitumor efficiency of EtpP-CDDP NLCs was evaluated on lung cancer-bearing xenografts. Results EtpP-CDDP NLCs showed a uniformly spherical morphology with a size of 176.8±4.9 nm and -potential of -31.9±3.2 mV. Cellular uptake efficiency of EtpP-CDDP NLCs was 57.4%±3.9% on A549/DDP cells. EtpP-CDDP NLCs exhibited more sustained plasma retention, the highest drug distribution in tumors, and the highest tumor-inhibition rates in lung tumor-bearing mice. Conclusion EtpP-CDDP NLCs improved tumor-cell uptake, cytotoxicity, and tumor-inhibition efficiency, and could be used as a promising drug-delivery system for lung cancer combination therapy.
Collapse
Affiliation(s)
- Min Du
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, People’s Republic of China
| | - Jianbo Yin
- Department of Pharmacy, Wuxi Dashan Medical Beauty Clinic, Wuxi, Jiangsu Province, 214001, People’s Republic of China,Correspondence: Jianbo Yin, Email
| |
Collapse
|
4
|
Enhancement of S(+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system. Arch Pharm Res 2022; 45:822-835. [DOI: 10.1007/s12272-022-01413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
5
|
Efiana NA, Fürst A, Saleh A, Shahzadi I, Bernkop-Schnürch A. Phosphate decorated lipid-based nanocarriers providing a prolonged mucosal residence time. Int J Pharm 2022; 625:122096. [PMID: 35963286 DOI: 10.1016/j.ijpharm.2022.122096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop phosphate decorated lipid-based nanocarriers including self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to extend their mucosal residence time. All nanocarriers contained tetradecyltrimethylammonium bromide (TTAB) and polyoxyethylene (9) nonylphenol monophosphate ester (PNPP) for surface decoration. Zeta potential, cytotoxicity, charge conversion and phosphate release studies using isolated intestinal alkaline phosphatase (IAP) and Caco-2 cells were performed. Moreover, the residence time of nanocarriers was determined on porcine intestinal mucosa. Results showed a shift from negative to positive zeta potential due to the addition of TTAB and charge conversion back to a negative zeta potential when also PNPP was added. Up to a concentration of 0.3 %, lipid-based nanocarriers were not toxic. Charge conversion studies with IAP revealed the highest zeta potential shift for NLCTTAB-PNPP with almost Δ22 mV. Phosphate release studies using isolated IAP as well as Caco-2 cells showed a fast phosphate release for SEDDSTTAB-PNPP, SLNTTAB-PNPP and NLCTTAB-PNPP. SLN TTAB-PNPP and NLC TTAB-PNPP provided the highest increase in mucosal residence time that was 4-fold more prolonged than that of blank formulations. In conclusion, phosphate modified lipid-based nanocarriers can essentially prolong the intestinal residence time of their payload.
Collapse
Affiliation(s)
- Nuri Ari Efiana
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, Jl. Jend. A.H. Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Borderwala K, Rathod S, Yadav S, Vyas B, Shah P. Eudragit S-100 Surface Engineered Nanostructured Lipid Carriers for Colon Targeting of 5-Fluorouracil: Optimization and In Vitro and In Vivo Characterization. AAPS PharmSciTech 2021; 22:216. [PMID: 34386888 DOI: 10.1208/s12249-021-02099-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
5-Fluorouracil (5-FU) is the most preferred chemotherapeutic agent in the management of colon cancer but is associated with poor therapeutic efficacy and lack of site specificity. Hence, it was aimed to employ Eudragit S100 surface engineered 5-FU nanostructured lipid carriers for the spatial and temporal release of the drug for the treatment of colon cancer. Hot high-pressure homogenization (HPH) technique was employed in the preparation of 5-FU-NLCs. The optimization of 5-FU-NLCs was performed using a Quality by Design (QbD) approach. A 32 factorial design was employed wherein the relationship between independent variables [amount of oleic acid (X1) and concentration of Tween®80 (X2)] and dependent variables [particle size (Y1) and % entrapment efficiency (Y2)] was studied. Optimized 5-FU-NLCs were surface treated to obtain Eudragit S100-coated 5-FU-NLCs (EU-5-FU-NLCs). The evaluation parameters for 5-FU-NLCs and EU-5-FU-NLCs included surface morphology, particle size, PDI, and zeta potential. In vitro release from EU-5-FU-NLCs revealed a selective and controlled 5-FU release in the colonic region for 24 h. In vitro cytotoxicity (MTT assay) was performed against Caco-2 cancer cells, wherein EU-5-FU-NLCs exhibited a 2-fold greater cytotoxic potential in comparison to a 5-FU solution (5-FU-DS). Oral administration of EU-5-FU-NLCs in Albino Wistar rats depicted a higher Cmax (2.54 folds) and AUC (11 folds) as well as prolonged Tmax (16 folds) and MRT (4.32 folds) compared to 5-FU-DS confirming higher bioavailability along with the spatial and temporal release in the colonic region. Thus, a multifaceted strategy involving abridgement of nanotechnology along with surface engineering is introduced for effective chemotherapy of colon cancer via oral administration of 5-FU with uncompromised safety and higher efficacy.Graphical abstract.
Collapse
|
8
|
Liao CC, Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice. J Nanobiotechnology 2021; 19:48. [PMID: 33588861 PMCID: PMC7885212 DOI: 10.1186/s12951-021-00789-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To control a bacterial infection, an immune response is required, but this response might contribute to organ failure. Kidneys are one of the main organs affected by bacteremia. Combination therapies with antibacterial and anti-inflammatory effects may be beneficial in treating bacteremia. This study aimed to develop nanostructured lipid carriers (NLCs) loaded with ciprofloxacin and rolipram that exert a combination of anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-inflammatory effects. Retinol was incorporated into the nanoparticles to transport retinol-binding protein 4 (RBP4) to the kidneys, which abundantly express RBP receptors. The NLCs were fabricated by high-shear homogenization and sonication, and neutrophils were used as a model to assess their anti-inflammatory effects. Mice were injected with MRSA to establish a model of bacteremia with organ injury. Results The mean nanoparticle size and zeta potential of the NLCs were 171 nm and − 39 mV, respectively. Ciprofloxacin (0.05%, w/v) and rolipram (0.02%) achieved encapsulation percentages of 88% and 96%, respectively, in the nanosystems. The minimum bactericidal concentration of free ciprofloxacin against MRSA increased from 1.95 to 15.63 µg/ml when combined with rolipram, indicating a possible drug-drug interaction that reduced the antibacterial effect. Nanoparticle inclusion promoted the anti-MRSA activity of ciprofloxacin according to time-kill curves. The NLCs were found to be largely internalized into neutrophils and exhibited superior superoxide anion inhibition than free drugs. Retinol incorporation into the nanocarriers facilitated their efficient targeting to the kidneys. The NLCs significantly mitigated MRSA burden and elastase distribution in the organs of MRSA-infected animals, and the greatest inhibition was observed in the kidneys. Bacterial clearance and neutrophil infiltration suppression attenuated the bacteremia-induced cytokine overexpression, leading to an improvement in the survival rate from 22% to 67%. Conclusions The dual role of our NLCs endowed them with greater efficacy in treating MRSA bacteremia than that of free drugs. ![]()
Collapse
Affiliation(s)
- Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - You-Shan Dai
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan. .,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fuxing Street, Kweishan, Taoyuan, 333, Taiwan. .,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Olerile LD. Further Development of Near-Infrared Mediated Quantum Dots and Paclitaxel Co-loaded Nanostructured Lipid Carrier System for Cancer Theragnostic. Technol Cancer Res Treat 2020; 19:1533033820914308. [PMID: 32336244 PMCID: PMC7225832 DOI: 10.1177/1533033820914308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Of colloidal systems, ceteris paribus, nanostructured lipid carriers are second to none in offering a single-unit platform for multifunctional benefits. Quantum dots are known to possess unique properties that make them ideal for imaging purpose and that they may be used for cancer detection. For several decades, paclitaxel has been the most effective drug against a wide range of solid tumours. Theragnostic nanomedicine provides a platform to monitor, evaluate, and individualize treatment in real time. Evaluation of cancer treatment outcome at an early stage therapy is key to increase survival prospects of a patient. Previously, a novel co-loaded nanostructured lipid carriers’ theragnostic system for parenteral administration was developed. The aim of this study was to further investigate the co-loaded nanostructured lipid carriers in order to provide interpretation necessary for preclinical elucidation of the formulation, in part. The co-loaded nanostructured lipid carriers were prepared by oil/water emulsification-solvent evaporation technique. In this study, stability and co-loaded nanostructured lipid carriers’ internalization by MCF 7 and HepG2 cells were investigated. The co-loaded nanostructured lipid carriers was stable at 4°C for 1 month. The formulation was successfully internalized by MCF-7 and HepG2 cells. Nevertheless, the co-loaded nanostructured lipid carrier was more apt for MCF-7 cells. This finding affirms the formulation to be the most appropriate for breast cancer treatment. In addition, if taken correctly by a patient for a month, the formulation would give true reflection of the contents’ amounts, the factor paramount to appropriate changes in treatment protocol. It can therefore safely be concluded that the co-loaded nanostructured lipid carrier formulation may be potentially an effective theragnostic translational system.
Collapse
Affiliation(s)
- Livesey D Olerile
- The School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
10
|
Rapalli VK, Kaul V, Waghule T, Gorantla S, Sharma S, Roy A, Dubey SK, Singhvi G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci 2020; 152:105438. [DOI: 10.1016/j.ejps.2020.105438] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
|
11
|
Dong Z, Iqbal S, Zhao Z. Preparation of Ergosterol-Loaded Nanostructured Lipid Carriers for Enhancing Oral Bioavailability and Antidiabetic Nephropathy Effects. AAPS PharmSciTech 2020; 21:64. [PMID: 31932990 DOI: 10.1208/s12249-019-1597-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
In our previously studies, we confirmed that ergosterol could ameliorate diabetic nephropathy by suppressing the proliferation of mesangial cells and the accumulation of extracellular matrix (ECM). However, the therapeutic application of ergosterol may be confined due to poor aqueous solubility and low oral bioavailability. We aim to prepare ergosterol-loaded nanostructured lipid carriers (ERG-NLCs) to enhance the solubility and oral bioavailability of ergosterol. ERG-NLCs were prepared using glyceryl monostearate and decanoyl/octanoyl-glycerides by hot emulsification-ultrasonication method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) analysis, entrapment efficiency (EE), and drug loading (DL) capacity studies. The prepared ERG-NLCs were spherical, with particle size of 81.39 nm and negative zeta potential of 30.77 mV. Ergosterol was successfully encapsulated in NLCs with a high EE of 92.95% and a DL capacity of 6.51%. In pharmacokinetic study, Cmax and AUC0-∞ of ergosterol in ERG-NLCs were obviously enhanced, and the relative oral bioavailability of ERG-NLCs was 277.56% higher than that of raw ergosterol. Moreover, the in vitro pharmacodynamic study indicated that ERG-NLCs inhibited high-glucose-stimulated mesangial cells over proliferation and ECM accumulation more effectively compared to raw ergosterol. In conclusion, the validated ERG-NLCs showed that NLCs mediated delivery could be used as potential vehicle to enhance solubility, oral bioavailability and therapeutic efficacy of ergosterol.
Collapse
|
12
|
Synthesis of Tilmicosin Nanostructured Lipid Carriers for Improved Oral Delivery in Broilers: Physiochemical Characterization and Cellular Permeation. Molecules 2020; 25:molecules25020315. [PMID: 31941074 PMCID: PMC7024240 DOI: 10.3390/molecules25020315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop nanostructured lipid carriers (NLCs) for improved oral absorption of tilmicosin (TMS) in broilers. Thus, palmitic acid, lauric acid, and stearic acid were selected as solid lipids to formulate TMS-pNLCs, TMS-lNLCs, and TMS-sNLCs, respectively. They showed similar physicochemical properties and meanwhile possessed excellent storage and gastrointestinal stability. The TMS interacted with the lipid matrix and was encapsulated efficiently in NLCs in an amorphous structure. NLCs could enhance oral absorption of TMS compared to 10% tilmicosin phosphate solution in broilers, among which the TMS-sNLCs were the most efficient drug delivery carriers, with a relative oral bioavailability of 203.55%. NLCs could inhibit the efflux of P-glycoprotein (P-pg) toward TMS, which may be involved with improved oral absorption. Taken together, these types of solid lipids influenced the enhanced level of NLCs toward oral bioavailability of TMS, and the sNLCs proved to be the most promising oral delivery carriers of TMS.
Collapse
|
13
|
In vitro and in vivo evaluation of biotin-mediated PEGylated nanostructured lipid as carrier of disulfiram coupled with copper ion. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol 2019; 15:499-515. [PMID: 31104522 DOI: 10.1080/17425255.2019.1621289] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Solid matrix mediated lipid nanoparticle formulations (LNFs) retain some of the best features of ideal drug carriers necessary for improving the oral absorption and bioavailability (BA) of both hydrophilic and hydrophobic drugs. LNFs with solid matrices may be typically categorized into three major types of formulations, viz., solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugate nanoparticles (LDC-NPs). Solid matrix based LNFs are, potentially, the most appropriate delivery systems for poorly water soluble drugs in need of improved drug solubility, permeability, absorption, or increased oral BA. In addition, LNFs as matrices are able to encapsulate both hydrophobic and hydrophilic drugs in a single matrix based on their excellent ability to form cores and shells. Interestingly, LNFs also act as delivery devices to impart chemical stability to various orally administered drugs. Areas covered: Aim of the review is to forecast the presentation of pharmacokinetic characteristics of solid lipid matrix based nanocarriers which are typically biocompatible, biodegradable and non-toxic carrier systems for efficient oral delivery of various drugs. Efficient delivery is broadly mediated by the fact that lipophilic drugs are readily soluble in lipidic substrates that are capable of permeating across the gut epithelium following oral administration, subsequently delivering the moiety of interest more efficiently across the gut mucosal membrane. This enhances the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile. This article specifically focuses on the biopharmaceutical and pharmacokinetic aspects of such solid lipid matrix based nanoformulations and possible mechanisms for better drug absorption and improved BA following oral administration. It also briefly reviews methods to access the efficacy of LNFs for improving oral BA of drugs, regulatory aspects and some interesting lipid-derived commercial formulations, with a concluding remark. Expert opinion: LNFs enhance the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile.
Collapse
Affiliation(s)
- Subham Banerjee
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Guwahati , Assam , India.,b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| | - Jonathan Pillai
- b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| |
Collapse
|
15
|
Gambhire VM, Salunkhe SM, Gambhire MS. Atorvastatin-loaded lipid nanoparticles: antitumor activity studies on MCF-7 breast cancer cells. Drug Dev Ind Pharm 2018; 44:1685-1692. [DOI: 10.1080/03639045.2018.1492605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103:598-613. [DOI: 10.1016/j.biopha.2018.04.055] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
|
17
|
Yuan X, Fei F, Sun H, Xiao C, Zhao X, Zhang Y, Zheng X. Tanshinol borneol ester on nanostructured lipid carriers has longer brain and systemic effector retention and better antioxidant activity in vivo. Int J Nanomedicine 2018; 13:2265-2274. [PMID: 29695905 PMCID: PMC5905822 DOI: 10.2147/ijn.s159789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Tanshinol borneol ester (DBZ) is a hybrid of danshensu (DSS) and borneol and has anti-ischemic activity in animals. However, its low water solubility and short half-life limit its clinical application. Methods We prepared polyethylene glycol (PEG)-modified and DBZ-loaded nanostructured lipid carriers (DBZ-PEG-NLC) and DBZ-NLC, and examined their physical characteristics, such as particle size, zeta potential, entrapment efficiency and drug loading. The in vitro stability and pharmacokinetics in rats as well as antioxidant activity of DBZ-PEG-NLC and DBZ-NLC in a C57BL/6 mouse model of ischemia/reperfusion-related brain injury were investigated. The levels of DBZ and its hydrolyzed DSS in rat plasma and brain microdialysates were determined by liquid chromatography-mass spectroscopy/mass spectroscopy analysis. Results We found that the mean particle size and entrapment efficacy of DBZ-PEG-NLC were similar to that of DBZ-NLC. The DBZ-PEG-NLC, like DBZ-NLC, released DBZ in a biphasic manner with initially burst release and then prolonged slow release in vitro. Intravenous injection of DBZ-PEG-NLC resulted in significantly higher levels and longer retention periods of DBZ and DSS in plasma and the brains than DBZ-NLC and DBZ in rats. Finally, treatment with DBZ-PEG-NLC achieved a better antioxidant activity than DBZ or DBZ-NLC in mouse model of ischemia/reperfusion by reducing the levels of brain malondialdehyde, but increasing the levels of brain superoxide dismutase and glutathione. Conclusion DBZ-PEG-NLC is a preferable option to deliver DBZ for sustainable release of DSS and borneol in vivo, and may serve as a promising drug for effective therapy of ischemic cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Xinyi Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Fuhuan Fei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Huanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
18
|
Polysaccharides of Atractylodes macrocephala Koidz-loaded nanostructured lipid carriers: Optimization on conditions by RSM and immunological activity in vitro. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13:288-303. [PMID: 30065762 PMCID: PMC6040163 DOI: 10.4103/1735-5362.235156] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During the recent years, more attentions have been focused on lipid base drug delivery system to overcome some limitations of conventional formulations. Among these delivery systems solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems due to the ease of manufacturing processes, scale up capability, biocompatibility, and also biodegradability of formulation constituents and many other advantages which could be related to specific route of administration or nature of the materials are to be loaded to these delivery systems. The aim of this article is to review the advantages and limitations of these delivery systems based on the route of administration and to emphasis the effectiveness of such formulations.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| |
Collapse
|
20
|
von Delius M, Le CM, Ellinger B, Kuzikov M, Gul S, Dong VM. Synthesis and Biological Activity of Octaketides from the Cytosporone Family. Isr J Chem 2017. [DOI: 10.1002/ijch.201700023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christine M. Le
- Department of Chemistry; University of Toronto; 80 St. George Street Toronto, Ontario M5S 3H6 Canada
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort (Fraunhofer-IME SP); Schnackenburgallee 114 D-22525 Hamburg Germany
| | - Vy M. Dong
- Department of Chemistry; University of California Irvine; 4403 Natural Sciences 1 Irvine, California 92697 USA
| |
Collapse
|
21
|
Zhang J, He Y, Jiang J, Li M, Jin C, Wang L, Wang D. In vitro and in vivo evaluation of folate-mediated PEGylated nanostructured lipid carriers for the efficient delivery of furanodiene. Drug Dev Ind Pharm 2017; 43:1610-1618. [DOI: 10.1080/03639045.2017.1328429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianmei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianqi Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meng Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chenhao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
22
|
Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs. NANOMATERIALS 2017; 7:nano7060122. [PMID: 28554993 PMCID: PMC5485769 DOI: 10.3390/nano7060122] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
Collapse
Affiliation(s)
- Qianwen Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China.
| | - Yinghong Huang
- GuangzhouGuoyu Pharmaceutical Technology Co., Ltd., Guangzhou 510632, China.
| | - Xi Xia
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci 2017; 496:311-326. [PMID: 28237749 DOI: 10.1016/j.jcis.2017.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023]
Abstract
To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC50=0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
24
|
Gao X, Zhang J, Xu Q, Huang Z, Wang Y, Shen Q. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery. Drug Dev Ind Pharm 2017; 43:661-667. [DOI: 10.1080/03639045.2016.1275671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xuan Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zun Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Boreham A, Volz P, Peters D, Keck CM, Alexiev U. Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur J Pharm Biopharm 2017; 110:31-38. [DOI: 10.1016/j.ejpb.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/11/2023]
|
26
|
Lin T, Huang X, Wang Y, Zhu T, Luo Q, Wang X, Zhou K, Cheng H, Peng D, Chen W. Long circulation nanostructured lipid carriers for gambogenic acid: formulation design, characterization, and pharmacokinetic. Xenobiotica 2016; 47:793-799. [DOI: 10.1080/00498254.2016.1229084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tongyuan Lin
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xia Huang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Wang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Zhu
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Luo
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxiao Wang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kai Zhou
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Cheng
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
27
|
Zhang S, Wang J, Pan J. Baicalin-loaded PEGylated lipid nanoparticles: characterization, pharmacokinetics, and protective effects on acute myocardial ischemia in rats. Drug Deliv 2016; 23:3696-3703. [PMID: 27749105 DOI: 10.1080/10717544.2016.1223218] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Shouwen Zhang
- Department of Cardiology, Linyi People’s Hospital, Linyi, P. R. China
| | - Jie Wang
- Department of Cardiology, Linyi People’s Hospital, Linyi, P. R. China
| | - Jin Pan
- Department of Cardiology, Linyi People’s Hospital, Linyi, P. R. China
| |
Collapse
|
28
|
Zhou X, Chen Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharm Res 2015; 38:2193-200. [PMID: 26152876 DOI: 10.1007/s12272-015-0630-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
We developed silybin (SIL) emulsomes and evaluated their physicochemical properties and the in vivo pharmacokinetics of SIL delivered by emulsomes in rats. SIL emulsomes were prepared using the thin film dispersion method. SIL emulsomes were evaluated for their entrapment efficiency, particle size, zeta potential, morphology, in vitro release, and in vivo drug delivery in rats. The entrapment efficiency was above 80 %. The average particle size and zeta potential were 364.1 ± 20 nm and -34 ± 8 mV, respectively. Morphological analysis revealed that the SIL emulsomes were spherical in shape. Compared to an SIL solution, emulsomes produced sustained release of SIL for up to 48 h after an initial burst release in vitro. The pharmacokinetics of SIL emulsomes in rats were evaluated after intravenous injection, and the results were compared with those obtained for the control SIL solution. Following SIL delivery by emulsomes, the area under the curve was 2.2-fold higher and the mean residence time was 2.5-fold higher than the corresponding values recorded using SIL solution. Hence, emulsomes might represent a promising system for improving the bioavailability of lipophilic drugs. Moreover, emulsomes produce sustained drug release, which is advantageous in the clinical setting.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Pharmacy, Gansu Provincial Hospital, 204 Donggang West Road, Lanzhou, 730000, China.
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
29
|
Qu CY, Zhou M, Chen YW, Chen MM, Shen F, Xu LM. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomedicine 2015; 10:3911-20. [PMID: 26089667 PMCID: PMC4468988 DOI: 10.2147/ijn.s83211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU) and cisplatin (CDDP). The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC) platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity. METHODS First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA) was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells) was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model. RESULTS HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC) showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo. CONCLUSION This work reveals that HA-coated NLC could be used as a novel carrier to code-liver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.
Collapse
Affiliation(s)
- Chun-Ying Qu
- Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Min Zhou
- Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Ying-wei Chen
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Mei-mei Chen
- Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Feng Shen
- Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lei-Ming Xu
- Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Luan J, Zheng F, Yang X, Yu A, Zhai G. Nanostructured lipid carriers for oral delivery of baicalin: In vitro and in vivo evaluation. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi HG, Yong CS, Kim JO. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 2014; 114:407-415. [DOI: 10.1016/j.carbpol.2014.08.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/04/2023]
|
32
|
Luan J, Yang X, Chu L, Xi Y, Zhai G. PEGylated long circulating nanostructured lipid carriers for Amoitone B: Preparation, cytotoxicity and intracellular uptake. J Colloid Interface Sci 2014; 428:49-56. [DOI: 10.1016/j.jcis.2014.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022]
|
33
|
Zhai Y, Zhao L, Wang Z, Zhai G. RETRACTED ARTICLE: Preparation and characterization of novel lipid nanocapsules of ropivacaine for transdermal delivery. Drug Deliv 2014; 23:619-28. [PMID: 25005584 DOI: 10.3109/10717544.2014.930761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ropivacaine, a novel long-acting local anesthetic, has been proved to own superior advantage. However, the application form used in clinic, ropivacaine hydrochloride (Naropin Injection), which should be administed intravenously, is causing poor patient convenience. The purpose of this study was to formulate ropivacaine (RPV) in lipid nanocapsules (LNCs) and character the potential of LNCs in delivering RPV transdermally to exploit novel external preparation. The RPV-LNCs were successfully prepared by phase inversion technique and the formulation was characterized in terms of size, zeta potential, ex vivo permeation study, and pharmacodynamics. The prepared RPV-LNCs displayed a typical core-shell structure with a narrow size distribution of 62.1 ± 1.7 nm and drug loading of 1.35 ± 0.20%. The results of differential scanning calorimetry (DSC) analysis and X-ray diffraction showed that RPV was in amorphous crystalline state when encapsulated into LNCs. Furthermore, the results of ex vivo permeation study displayed that RPV-LNCs had an improved permeability (349.0 ± 11.5 μg cm(-2) versus 161.0 ± 1.3 μg cm(-2)) compared with free RPV. The results of histopathology study showed that interaction between LNCs and skin could break the close conjugation of corneocyte layers. In the mice writhing test, RPV-LNCs exhibited obvious analgesic effect by both prolonging pain latency and reducing the writhing response with an inhibition rate of 91.3% compared to the control group. In conclusion, RPV-LNCs could be a promising delivery system to encapsulate RPV and deliver RPV for transdermal administration.
Collapse
Affiliation(s)
- Yingjie Zhai
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , China , and
| | - Lili Zhao
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , China , and
| | - Zimin Wang
- b Department of Orthopedics , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Guangxi Zhai
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , China , and
| |
Collapse
|