1
|
P S A, Thadathil DA, George L, Varghese A. Food Additives and Evolved Methods of Detection: A Review. Crit Rev Anal Chem 2024:1-20. [PMID: 39015954 DOI: 10.1080/10408347.2024.2372501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.
Collapse
Affiliation(s)
- Aiswarya P S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
2
|
Ayisha Naziba T, Praveen Kumar D, Karthikeyan S, Sriramajayam S, Djanaguiraman M, Sundaram S, Ghamari M, Prasada Rao R, Ramakrishna S, Ramesh D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. CHEM REC 2024; 24:e202400030. [PMID: 38837295 DOI: 10.1002/tcr.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Indexed: 06/07/2024]
Abstract
Biomass resources are often disposed of inefficiently and it causes environmental degradation. These wastes can be turned into bio-products using effective conversion techniques. The synthesis of high-value bio-products from biomass adheres to the principles of a sustainable circular economy in a variety of industries, including agriculture. Recently, fluorescent carbon dots (C-dots) derived from biowastes have emerged as a breakthrough in the field, showcasing outstanding fluorescence properties and biocompatibility. The C-dots exhibit unique quantum confinement properties due to their small size, contributing to their exceptional fluorescence. The significance of their fluorescent properties lies in their versatile applications, particularly in bio-imaging and energy devices. Their rapid and straight-forward production using green/chemical precursors has further accelerated their adoption in diverse applications. The use of green precursors for C-dot not only addresses the biomass disposal issue through a scientific approach, but also establishes a path for a circular economy. This approach not only minimizes biowaste, which also harnesses the potential of fluorescent C-dots to contribute to sustainable practices in agriculture. This review explores recent developments and challenges in synthesizing high-quality C-dots from agro-residues, shedding light on their crucial role in advancing technologies for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- T Ayisha Naziba
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - D Praveen Kumar
- Bannari Amman Institute of Technology, Sathya Mangalam, 638 401, Tamil Nadu, India
| | - S Karthikeyan
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - S Sriramajayam
- Department of Agricultural Engineering, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, 628 252., Tamil Nadu, India
| | - M Djanaguiraman
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - Mehrdad Ghamari
- School of Computing, Engineering and Digital Technologies, Teesside University Tees Valley, Middlesbrough, TS1 3BX, UK
| | - R Prasada Rao
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering, Drive 1, 117576, Singapore
| | - D Ramesh
- Department of Renewable Energy Engineering, Centre for Post-Harvest Technology, Agricultural Engineering College and Research Institute, Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
3
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Mohammadinejad A, Abnous K, Alinezhad Nameghi M, Yahyazadeh R, Hamrah S, Senobari F, Mohajeri SA. Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122200. [PMID: 36481534 DOI: 10.1016/j.saa.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy drugs of daunorubicin and doxorubicin treat cancers with many side effects. So, detection of them in the biological system for regulation and controlling of usage is essential. In this study, a ratiometric fluorescent method was introduced for detection of daunorubicin and doxorubicin using bell pepper-based carbon dots, as the variable signal, and silica-coated CdTe quantum dots, as the constant signal. The detection was done based on variations of carbon dots intensity in the presence of drugs in comparison with the constant intensity of silica-coated CdTe quantum dots. The proposed ratiometric fluorescent method was successfully used for detection of daunorubicin and doxorubicin range of 54.37-13594.34 nmolL-1 and 86.2-17242 nmolL-1, with a detection limit of 18.53 nmolL-1 and 29 nmolL-1, respectively. Also, this method was used for detection of drugs in serum samples with recovery ranges of 86.14-99.62 (RSD 3-1.47%) and 86.32-97.53 (3.38-1.48%), respectively. Finally, after evaluation of carbon dots toxicity by MTT test, carbon dots was applied for imaging of prostate cancer cell lines (PC-3) and breast cancer cell lines (MCF7). The results demonstrated that despite improvement of the repeatability and interferences reduction by ratiometric method, also carbon dots were successfully applied for imaging of cell lines.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hamrah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Senobari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Pandey AK, Bankoti K, Nath TK, Dhara S. Hydrothermal synthesis of PVP-passivated clove bud-derived carbon dots for antioxidant, catalysis, and cellular imaging applications. Colloids Surf B Biointerfaces 2022; 220:112926. [DOI: 10.1016/j.colsurfb.2022.112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
6
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
7
|
Hu F, Lu H, Xu G, Lv L, Chen L, Shao Z. Carbon quantum dots improve the mechanical behavior of polyvinyl alcohol/polyethylene glycol hydrogel. J Appl Polym Sci 2022. [DOI: 10.1002/app.52805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Hu
- Group of Mechanical and Biomedical Engineering Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an People's Republic of China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an People's Republic of China
- Taizhou Medical New & Hi‐tech Industrial Development Zone Taizhou People's Republic of China
| | - Guangshen Xu
- Group of Mechanical and Biomedical Engineering Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an People's Republic of China
| | - Leifeng Lv
- Department of Orthopedics The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an People's Republic of China
| | - Lu Chen
- Group of Mechanical and Biomedical Engineering Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering, Xi'an Polytechnic University Xi'an People's Republic of China
| | - Zhonglei Shao
- Faculty of Engineering, Royal College University of Strathclyde Glasgow UK
| |
Collapse
|
8
|
Fluorescent carbon dots for sensing metal ions and small molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Synthesis, Characterization and Ecotoxicity Evaluation of Biochar-Derived Carbon Dots from Spruce Tree, Purple Moor-Grass and African Oil Palm. Processes (Basel) 2021. [DOI: 10.3390/pr9071095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biochar-derived C-Dots from Picea, Molinia caerulea and Elaeis guineensis were synthesized through a hydrothermal process, and their physicochemical and optical characteristics and environmental effects were compared. These C-Dots were characterized by techniques such as Attenuated Total Reflection–Fourier Transform Infrared (ATR-FTIR), UV-Vis spectrophotometry, fluorescence spectroscopy, dynamic light scattering (DLS), Z potential, and High-Resolution Transmission Electronical Microscopy (HR-TEM). The ecotoxicity tests were performed using the Microtox™ test, making this study one of the few that use this method. The C-Dots from Molinia caerulea showed the best quantum yield (QY) of 8.39% and moderate ecotoxicity, while Elaeis guineensis has the lowest QY (2.31%) but with zero toxicity. Furthermore, the C-Dots from Picea presents good optical properties but showed high toxicity and limits its use. Finally, all C-Dots showed functional groups that could be biofunctionalized with biomolecules, especially C-Dots from Molinia caerulea and Elaeis guineensis show potential for use in the development of optical biosensors.
Collapse
|
11
|
Recent advances in analytical, bioanalytical and miscellaneous applications of green nanomaterial. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Zaib M, Akhtar A, Maqsood F, Shahzadi T. Green Synthesis of Carbon Dots and Their Application as Photocatalyst in Dye Degradation Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04904-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Esfandiari N, Bagheri Z, Ehtesabi H, Fatahi Z, Tavana H, Latifi H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon 2019; 5:e02940. [PMID: 31872119 PMCID: PMC6909074 DOI: 10.1016/j.heliyon.2019.e02940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pristine carbon dots (CDs) derived from citric acid pyrolysis are used in a variety of biomedical research such as imaging and drug delivery. However, potential cytotoxic effects of pyrolysis temperature on cells is underexplored. To address this need, we studied toxicity of the CDs to breast cancer cells using MTT and LDH assays. In addition, we investigated photo-induced cytotoxicity of the synthesized CDs in a wide concentration range under white light. RESULTS Our results suggest little cytotoxicity of the CDs after 24 h exposure of cells. Only the high quantum yield CDs caused a significant toxicity to cells at the highest concentrations of 2.0 and 1.5 mg/ml compared to other CDs at similar concentrations. The synthesized CDs entered the cells without any significant cytotoxicity. The CDs also caused a concentration- and irradiation time-dependent photo-induced cytotoxicity. CONCLUSION The optimization of synthesis conditions from this study may help develop safe and efficient CDs for imaging and drug delivery.
Collapse
Affiliation(s)
- Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Zahra Fatahi
- Protein Research Center, Shahid Beheshti University G.C, Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44236, USA
| | - Hamid Latifi
- Laser & Plasma Research Institute, Shahid Beheshti University G.C, Tehran, Iran
| |
Collapse
|
14
|
Zulfajri M, Gedda G, Chang CJ, Chang YP, Huang GG. Cranberry Beans Derived Carbon Dots as a Potential Fluorescence Sensor for Selective Detection of Fe 3+ Ions in Aqueous Solution. ACS OMEGA 2019; 4:15382-15392. [PMID: 31572837 PMCID: PMC6761680 DOI: 10.1021/acsomega.9b01333] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 05/20/2023]
Abstract
Recently, synthesis, characterization, and application of carbon dots have received much attention. Natural products are the effectual carbon precursors to synthesize carbon dots with fascinating chemical and physical properties. In this study, the fluorescent sensor of carbon dots derived from cranberry beans without any functionalization and modification was developed. The carbon dots were prepared with a cheap, facile, and green carbon precursor through a hydrothermal treatment method. The synthetic process was toxic chemical-free, convenient, and environmentally friendly. To find the optimized synthetic conditions, the temperature, heating time duration, and carbon precursor weight were evaluated. The prepared carbon dots were characterized by UV light, transmission electron microscopy, Raman, Fourier transform infrared, UV-vis, and fluorescence spectroscopy. The resulting carbon dots exhibit stable fluorescence with a quantum yield of approximately 10.85%. The carbon dots emitted the broad fluorescence emission range between 410 and 540 nm by changing the excitation wavelength and were used for the detection of Fe3+ ions at the excitation of 380 nm. It is found that Fe3+ ions induced the fluorescence intensity quenching of the carbon dots stronger than other heavy metals and the Fe3+ ion detection can be achieved within 3 min. Spectroscopic data showed that the obtained carbon dots can detect Fe3+ ions within the wide concentration range of 30-600 μM with 9.55 μM detection limit.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Chemistry Education, Universitas Serambi
Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | - Gangaraju Gedda
- Department
of Chemistry, GITAM Deemed to be University, Sangareddy 502329, India
| | - Chia-Jung Chang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Pin Chang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Genin Gary Huang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Chu KW, Lee SL, Chang CJ, Liu L. Recent Progress of Carbon Dot Precursors and Photocatalysis Applications. Polymers (Basel) 2019; 11:E689. [PMID: 30995724 PMCID: PMC6523528 DOI: 10.3390/polym11040689] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022] Open
Abstract
Carbon dots (CDs), a class of carbon-based sub-ten-nanometer nanoparticles, have attracted great attention since their discovery fifteen years ago. Because of the outstanding photoluminescence properties, photostability, low toxicity, and low cost, CDs have potential to replace traditional semiconductor quantum dots which have serious drawbacks of toxicity and high cost. This review covers the common top-down and bottom-up methods for the synthesis of CDs, different categories of CD precursors (small molecules, natural polymers, and synthetic polymers), one-pot and multi-step methods to produce CDs/photocatalyst composites, and recent advances of CDs on photocatalysis applications mostly in pollutant degradation and energy areas. A broad range of precursors forming fluorescent CDs are discussed, including small molecule sole or dual precursors, natural polymers such as pure polysaccharides and proteins and crude bio-resources from plants or animals, and various synthetic polymer precursors with positive, negative, neutral and hydrophilic, hydrophobic, or zwitterionic feature. Because of the wide light absorbance, excellent photoluminescence properties and electron transfer ability, CDs have emerged as a new type of photocatalyst. Recent work of CDs as sole photocatalyst or in combination with other materials (e.g., metal, metal sulfide, metal oxide, bismuth-based semiconductor, or other traditional photocatalysts) to form composite catalyst for various photocatalytic applications are reviewed. Possible future directions are proposed at the end of the article on mechanistic studies, production of CDs with better controlled properties, expansion of polymer precursor pool, and systematic studies of CDs for photocatalysis applications.
Collapse
Affiliation(s)
- Kuan-Wu Chu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, USA.
| | - Sher Ling Lee
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan.
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan.
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
16
|
Jayanthi M, Megarajan S, Subramaniyan SB, Kamlekar RK, Veerappan A. A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Li J, Tang K, Yu J, Wang H, Tu M, Wang X. Nitrogen and chlorine co-doped carbon dots as probe for sensing and imaging in biological samples. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181557. [PMID: 30800391 PMCID: PMC6366224 DOI: 10.1098/rsos.181557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 05/20/2023]
Abstract
A facile one-step hydrothermal synthesis approach was proposed to prepare nitrogen and chlorine co-doped carbon dots (CDs) using l-ornithine hydrochloride as the sole precursor. The configuration and component of CDs were characterized by transmission electron microscopy and X-ray photoelectron and Fourier transform infrared spectroscopies. The obtained CDs (Orn-CDs) with a mean diameter of 2.1 nm were well monodispersed in aqueous solutions. The as-prepared CDs exhibited a bright blue fluorescence with a high yield of 60%, good photostability and low cytotoxicity. The emission of Orn-CDs could be selectively and effectively suppressed by Fe3+. Thus, a quantitative assay of Fe3+ was realized by this nanoprobe with a detection limit of 95.6 nmol l-1 in the range of 0.3-50 µmol l-1. Furthermore, ascorbic acid could recover the fluorescence of Orn-CDs suppressed by Fe3+, owing to the transformation of Fe3+ to Fe2+ by ascorbic acid. The limit of detection for ascorbic acid was 137 nmol l-1 in the range of 0.5-10 µmol l-1. In addition, the established method was successfully applied for Fe3+ and ascorbic acid sensing in human serum and urine specimens and for imaging of Fe3+ in living cells. Orn-CD-based sensing platform showed its potential to be used for biomedicine-related study because it is cost-effective, easily scalable and can be used without additional functionalization and sample pre-treatment.
Collapse
Affiliation(s)
- Jin Li
- Department of Reproductive Medicine, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou 441300, People's Republic of China
| | - Kai Tang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Jianxin Yu
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Mingli Tu
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| | - Xiaobo Wang
- Department of Reproductive Medicine, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou 441300, People's Republic of China
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, 8 East Culture Park Road, Suizhou 441300, People's Republic of China
| |
Collapse
|
18
|
Zhang W, Zhou Z. Citrus Pectin-Derived Carbon Microspheres with Superior Adsorption Ability for Methylene Blue. NANOMATERIALS 2017; 7:nano7070161. [PMID: 28665303 PMCID: PMC5535227 DOI: 10.3390/nano7070161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/26/2022]
Abstract
In this study, citrus pectin-derived, green, and tunable carbon microspheres with superior adsorption capacity and high adsorption rate, as well as good reusability toward methylene blue adsorption, were prepared by a facile hydrothermal method without any hazardous chemicals. The materials hold great potential for the treatment of methylene blue wastewater.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
19
|
Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:643-652. [DOI: 10.1016/j.msec.2016.12.095] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
|
20
|
Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Zheng N, Ding S, Zhou X. Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application. Colloids Surf B Biointerfaces 2016; 142:123-129. [DOI: 10.1016/j.colsurfb.2016.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
|
22
|
Zhang LY, Zhang W, Zhao Z, Liu Z, Zhou Z, Li CM. Highly poison-resistant Pt nanocrystals on 3D graphene toward efficient methanol oxidation. RSC Adv 2016. [DOI: 10.1039/c6ra06517a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly poison-resistant Pt nanocrystals are synthesized using reductive sugars derived from pectin hydrolysis, showing efficient catalytic performance toward methanol oxidation.
Collapse
Affiliation(s)
- Lian Ying Zhang
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Wenlin Zhang
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Zhiliang Zhao
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Ze Liu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture
- Southwest University
- Chongqing
- P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
23
|
Huang S, Wang L, Zhu F, Su W, Sheng J, Huang C, Xiao Q. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 2015. [DOI: 10.1039/c5ra05519a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Lumin Wang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Fawei Zhu
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Wei Su
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Jiarong Sheng
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Chusheng Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
| | - Qi Xiao
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001
- P. R. China
- State Key Laboratory of Virology
| |
Collapse
|