1
|
Drozd M, Kobylska E, Żmieńko M, Chudy M. Sensitive and label-free SPR biosensing platforms for high-throughput screening of plasma membrane receptors interactions with insulin-like targets of hypoglycaemic activity. Talanta 2024; 274:125914. [PMID: 38537356 DOI: 10.1016/j.talanta.2024.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 05/04/2024]
Abstract
Progress in medical sciences aims for tailored therapy of civilization diseases like diabetes. Preclinical screening of new medicines superior to insulin should include the verification of their affinity to the membrane receptors naturally stimulated by this hormone: insulin receptor isoforms A and B and insulin-like growth factor receptor. Considering that the affinity constants obtained using different experimental conditions are incomparable, it is essential to develop a robust and reliable method to analyze these interactions. The versatile SPR platform developed in this study enables the evaluation of the bioactivity of hypoglycaemic molecules. Thanks to the comprehensive characterization of miscellaneous aspects of the analytical platform, including the design of the SPR biosensor receptor layer, ensuring interaction specificity, as well as the quality control of the standards used (human insulin, HI; long-acting insulin analog: glargine, Gla), the feasibility of the method of equilibrium and kinetic constants determination for insulin-like targets was confirmed. SPR assays constructed in the direct format using IR-A, IR-B, and IGF1-R receptor proteins show high sensitivities and low detection limits towards insulin and glargine detection in the range of 18.3-53.3 nM with no signs of mass transport limitations. The improved analytical performance and stability of SPR biosensors favor the acquisition of good-quality kinetic data, while preservation of receptors activity after binding to long-chain carboxymethyldextran, combined with spontaneous regeneration, results in stability and long shelf life of the biosensor, which makes it useful for label-free insulin analogs biosensing and thus extensive screening in diabetic drugs discovery.
Collapse
Affiliation(s)
- Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822, Warsaw, Poland
| | - Ewa Kobylska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland; Łukasiewicz - Industrial Chemistry Institute, Rydygiera 8, 01-793, Warsaw, Poland
| | - Małgorzata Żmieńko
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Michał Chudy
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
2
|
Fan L, Du B, Pei F, Hu W, Guo A, Xie Z, Liu B, Tong Z, Mu X, Tan W. Surface Plasmon Resonance Sensor Based on Core-Shell Fe 3O 4@SiO 2@Au Nanoparticles Amplification Effect for Detection of T-2 Toxin. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063078. [PMID: 36991789 PMCID: PMC10055945 DOI: 10.3390/s23063078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
In this paper, a core-shell based on the Fe3O4@SiO2@Au nanoparticle amplification technique for a surface plasmon resonance (SPR) sensor is proposed. Fe3O4@SiO2@AuNPs were used not only to amplify SPR signals, but also to rapidly separate and enrich T-2 toxin via an external magnetic field. We detected T-2 toxin using the direct competition method in order to evaluate the amplification effect of Fe3O4@SiO2@AuNPs. A T-2 toxin-protein conjugate (T2-OVA) immobilized on the surface of 3-mercaptopropionic acid-modified sensing film competed with T-2 toxin to combine with the T-2 toxin antibody-Fe3O4@SiO2@AuNPs conjugates (mAb-Fe3O4@SiO2@AuNPs) as signal amplification elements. With the decrease in T-2 toxin concentration, the SPR signal gradually increased. In other words, the SPR response was inversely proportional to T-2 toxin. The results showed that there was a good linear relationship in the range of 1 ng/mL~100 ng/mL, and the limit of detection was 0.57 ng/mL. This work also provides a new possibility to improve the sensitivity of SPR biosensors in the detection of small molecules and in disease diagnosis.
Collapse
Affiliation(s)
- Lirui Fan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Aijiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zihao Xie
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenyuan Tan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
3
|
Abstract
Acute kidney injury (AKI) is one of the most prevalent and complex clinical syndromes with high morbidity and mortality. The traditional diagnosis parameters are insufficient regarding specificity and sensitivity, and therefore, novel biomarkers and their facile and rapid applications are being sought to improve the diagnostic procedures. The biosensors, which are employed on the basis of electrochemistry, plasmonics, molecular probes, and nanoparticles, are the prominent ways of developing point-of-care devices, along with the mutual integration of efficient surface chemistry strategies. In this manner, biosensing platforms hold pivotal significance in detecting and quantifying novel AKI biomarkers to improve diagnostic interventions, potentially accelerating clinical management to control the injury in a timely manner. In this review, novel diagnostic platforms and their manufacturing processes are presented comprehensively. Furthermore, strategies to boost their effectiveness are also indicated with several applications. To maximize these efforts, we also review various biosensing approaches with a number of biorecognition elements (e.g., antibodies, aptamers, and molecular imprinting molecules), as well as benchmark their features such as robustness, stability, and specificity of these platforms.
Collapse
Affiliation(s)
- Esma Derin
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Kim J, Hong UG, Choi Y, Hong S. Enhancing the evanescent field in TiO2/Au hybrid thin films creates a highly sensitive room-temperature formaldehyde gas biosensor. Colloids Surf B Biointerfaces 2019; 182:110303. [PMID: 31299539 DOI: 10.1016/j.colsurfb.2019.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jina Kim
- Department of Biotechnology, CHA University, Gyeonggi 13488, Republic of Korea
| | - Ung Gi Hong
- R&D center, SK Gas, Gyeonggi 13493, Republic of Korea
| | - Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Chungbuk, 28644, Republic of Korea.
| | - Surin Hong
- Department of Biotechnology, CHA University, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
5
|
Perez-Gonzalez VH, Gallo-Villanueva RC, Camacho-Leon S, Gomez-Quiñones JI, Rodriguez-Delgado JM, Martinez-Chapa SO. Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection. IET Nanobiotechnol 2016; 10:263-275. [PMID: 27676373 PMCID: PMC8676477 DOI: 10.1049/iet-nbt.2015.0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023] Open
Abstract
Circulating tumour cells (CTCs) are active participants in the metastasis process and account for ∼90% of all cancer deaths. As CTCs are admixed with a very large amount of erythrocytes, leukocytes, and platelets in blood, CTCs are very rare, making their isolation, capture, and detection a major technological challenge. Microfluidic technologies have opened-up new opportunities for the screening of blood samples and the detection of CTCs or other important cancer biomarker-proteins. In this study, the authors have reviewed the most recent developments in microfluidic devices for cells/biomarkers manipulation and detection, focusing their attention on immunomagnetic-affinity-based devices, dielectrophoresis-based devices, surface-plasmon-resonance microfluidic sensors, and quantum-dots-based sensors.
Collapse
Affiliation(s)
- Victor Hugo Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | | | - Sergio Camacho-Leon
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | - Jose Isabel Gomez-Quiñones
- School of Biotechnology and Health Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico
| | | | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Avenue Eugenio Garza Sada 2501 Sur, Monterrey, Mexico.
| |
Collapse
|
6
|
Choi Y, Shin SH, Hong S, Kim Y. A combined top-down/bottom-up approach to structuring multi-sensing zones on a thin film and the application to SPR sensors. NANOTECHNOLOGY 2016; 27:345302. [PMID: 27418406 DOI: 10.1088/0957-4484/27/34/345302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of a thin film with well-defined metallic micro/nanostructures, diverse surface functionalities, and superior electronic/optical properties has been a great challenge to researchers seeking an efficient method for the detection of various analytes in chemical and biological sensing applications. Herein, we report a facile and effective approach to the fabrication of an ordered gold island pattern on a glass substrate with contrasted chemical functionalities, which can provide spatially separated sensing zones for multi-detection. In the proposed method, the combination between the micro/nano-imprint lithography and sequential self-assembly approaches exhibited synergistic effects that allowed well-defined structuring and easy surface functionalization in separated sensing zones. Via imprint lithography, the uniform gold islands/glass structure was successfully fabricated from a readily available gold-coated glass film. In addition, a sequential self-assembling strategy and specific chemical-substrate interactions, such as thiol-gold and silane-glass, enabled the surfaces of gold islands and exposed portions of the glass substrate with contrasting chemical functionalities-SH-functionalized gold islands and NH2-functionalized glass substrate. A proof-of-concept experiment for the multi-detection of heavy metal ions (Hg(2+) and Cu(2+)) in an aqueous media was also successfully conducted using the dual-functionalized gold islands/glass structure and surface plasmon resonance measurements. The SH groups on the gold islands and the NH2 groups on the glass substrate functioned as spatially separated and selective receptors for Hg(2+) and Cu(2+) ions, respectively. Therefore, both the detection and quantification of Hg(2+) and Cu(2+) ions could be achieved using a single sensing substrate.
Collapse
Affiliation(s)
- Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Chungbuk 28644, Korea
| | | | | | | |
Collapse
|