1
|
Glišić T, Djuriš J, Vasiljević I, Parojčić J, Aleksić I. Application of Machine-Learning Algorithms for Better Understanding the Properties of Liquisolid Systems Prepared with Three Mesoporous Silica Based Carriers. Pharmaceutics 2023; 15:pharmaceutics15030741. [PMID: 36986602 PMCID: PMC10054079 DOI: 10.3390/pharmaceutics15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The processing of liquisolid systems (LSS), which are considered a promising approach to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the relatively high amount of liquid phase incorporated within them. The objective of this study was to apply machine-learning tools to better understand the effects of formulation factors and/or tableting process parameters on the flowability and compaction properties of LSS with silica-based mesoporous excipients as carriers. In addition, the results of the flowability testing and dynamic compaction analysis of liquisolid admixtures were used to build data sets and develop predictive multivariate models. In the regression analysis, six different algorithms were used to model the relationship between tensile strength (TS), the target variable, and eight other input variables. The AdaBoost algorithm provided the best-fit model for predicting TS (coefficient of determination = 0.94), with ejection stress (ES), compaction pressure, and carrier type being the parameters that influenced its performance the most. The same algorithm was best for classification (precision = 0.90), depending on the type of carrier used, with detachment stress, ES, and TS as variables affecting the performance of the model. Furthermore, the formulations with Neusilin® US2 were able to maintain good flowability and satisfactory values of TS despite having a higher liquid load compared to the other two carriers.
Collapse
|
2
|
El Masri S, Ruellan S, Zakhour M, Auezova L, Fourmentin S. Cyclodextrin-based low melting mixtures as a solubilizing vehicle: Application to non-steroidal anti-inflammatory drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Aleksić I, Glišić T, Parojčić J. Liquisolid systems as a novel approach in formulation and manufacturing of solid dosage forms: Challenges and perspectives. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liquisolid systems are a novel, promising platform for the production of solid dosage forms with a high liquid content, i.e. dispersion of the drug in a suitable, hydrophilic, non-volatile liquid vehicle or liquid drug. This technology requires conventional, but highly porous excipients (carrier and coating material in the appropriate ratio) able to absorb/adsorb liquid medication, resulting in both good flowability and acceptable compression properties. This approach has shown great potential to improve the dissolution rate and bioavailability of poorly soluble drugs, and has been recognized as a good alternative to common, more complex and expensive techniques. A variety of applications of this simple technique have been investigated recently, including the preparation of: modified release tablets, orally disintegrating tablets, solid dosage forms with liquid herbal extracts, etc. This emerging technology has numerous advantages, and the most important are: simplicity, cost-effectiveness, applicability in large scale production and environmental friendliness. However, it is accompanied by certain challenges as well, such as limited applicability in the case of highly dosed drugs. This article aims to give a comprehensive overview of recent progress regarding the potential applications of this technology, as well as to give an insight into the new liquisolid-based techniques intending to further support its commercial applicability.
Collapse
|
4
|
Liquisolid Technique: a Novel Tool to Develop Aceclofenac-Loaded Eudragit L-100 and RS-100-Based Sustained Release Tablets. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cirri M, Mura P, Valleri M, Brunetti L. Development and Characterization of Liquisolid Tablets Based on Mesoporous Clays or Silicas for Improving Glyburide Dissolution. Pharmaceutics 2020; 12:pharmaceutics12060503. [PMID: 32492869 PMCID: PMC7355560 DOI: 10.3390/pharmaceutics12060503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this work was to evaluate the effectiveness of mesoporous clays or silicas to develop fast-dissolving glyburide tablets based on a liquisolid approach. Selected clay (Neusilin®US2) and silica (Aeroperl®300) allowed preparation of innovative drug liquisolid systems containing dimethylacetamide or 2-pyrrolidone as drug solvents, without using coating materials which are necessary in conventional systems. The obtained liquisolid powders were characterized for solid-state properties, flowability, compressibility, morphology, granulometry, and then used for directly compressed tablet preparation. The developed liquisolid tablets provided a marked drug dissolution increase, reaching 98% dissolved drug after 60 min, compared to 40% and 50% obtained from a reference tablet containing the plain drug, and a commercial tablet. The improved glyburide dissolution was attributed to its increased wetting properties and surface area, due to its amorphization/solubilization within the liquisolid matrix, as confirmed by DSC and PXRD studies. Mesoporous clay and silica, owing to their excellent adsorbent, flow, and compressibility properties, avoided use of coating materials and considerably improved liquid-loading capacity, reducing the carrier amount necessary to obtain freely flowing powders. Neusilin®US2 showed a superior performance than Aeroperl®300 in terms of the tablet’s technological properties. Finally, simplicity and cost-effectiveness of the proposed approach make it particularly advantageous for industrial scale-up.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (L.B.)
| | - Paola Mura
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (L.B.)
- Correspondence: ; Tel.: +39-055-4573672
| | - Maurizio Valleri
- Menarini Manufacturing Logistics and Services, s.r.l. (AMMLS), 50019 Florence, Italy;
| | - Letizia Brunetti
- Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (L.B.)
| |
Collapse
|
6
|
Patel K, Doddapaneni R, Patki M, Sekar V, Bagde A, Singh M. Erlotinib-Valproic Acid Liquisolid Formulation: Evaluating Oral Bioavailability and Cytotoxicity in Erlotinib-Resistant Non-small Cell Lung Cancer Cells. AAPS PharmSciTech 2019; 20:135. [PMID: 30830506 DOI: 10.1208/s12249-019-1332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lung cancer patients develop acquired resistance to tyrosine kinase inhibitors including erlotinib (ERL) after few months of primary treatment. Evidently, new chemotherapy strategies to delay or overcome the resistance are urgently needed to improve the clinical outcome in non-small cell lung cancer (NSCLC) patients. In this paper, we have investigated the cytotoxic interaction of ERL and valproic acid (VA) in ERL-resistant NSCLC cells and developed a liquisolid formulation of ERL-VA for improving oral bioavailability of ERL. ERL is weakly basic, biopharmaceutical classification system (BCS) class II drug with extremely poor aqueous solubility while VA is a branched chain fatty acid. Ionic interaction between ERL and VA (1:2 M ratio) resulted in significant enhancement in saturation solubility of ERL at different pH range. Liquisolid formulation of ERL-VA (EVLF) developed using PEG 400 and mesoporous calcium silicate was characterized for solid state and in vitro dissolution in biorelevant dissolution medium (FaSSIF and FeSSIF). Cytotoxicity of ERL was enhanced by 2-5 folds on co-incubation with VA in HCC827/ERL cell line. Flow cytometry analysis using AnnexinV-FITC assay demonstrated that VA and ERL alone have poor apoptotic effect on HCC827/ERL cells while combination showed around 69% apoptotic cells. Western blot analysis confirmed the role of survivin in overcoming resistance. In vivo pharmacokinetic studies of EVLF in rats demonstrated a 199% relative bioavailability compared to ERL suspension. Thus, EVLF could be a promising alternative to current ERL formulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Manali Patki
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Vasanthkumar Sekar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA.
| |
Collapse
|
7
|
Anzilaggo D, O’Reilly Beringhs A, Pezzini BR, Sonaglio D, Stulzer HK. Liquisolid systems: Understanding the impact of drug state (solution or dispersion), nonvolatile solvent and coating material on simvastatin apparent aqueous solubility and flowability. Colloids Surf B Biointerfaces 2019; 175:36-43. [DOI: 10.1016/j.colsurfb.2018.11.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
8
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
9
|
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. ACTA ACUST UNITED AC 2018; 8:305-320. [PMID: 30397585 PMCID: PMC6209825 DOI: 10.15171/bi.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Oral drug delivery is the most favored route of drug administration. However, poor oral bioavailability is one of the leading reasons for insufficient clinical efficacy. Improving oral absorption of drugs with low water solubility and/or low intestinal membrane permeability is an active field of research. Cocrystallization of drugs with appropriate coformers is a promising approach for enhancing oral bioavailability.
Methods: In the present review, we have focused on recent advances that have been made in improving oral absorption through cocrystallization. The covered areas include supersaturation and its importance on oral absorption of cocrystals, permeability of cocrystals through membranes, drug-coformer pharmacokinetic (PK) interactions, conducting in vivo-in vitro correlations for cocrystals. Additionally, a discussion has been made on the integration of nanocrystal technology with supramolecular design. Marketed cocrystal products and PK studies in human subjects are also reported.
Results: Considering supersaturation and consequent precipitation properties is necessary when evaluating dissolution and bioavailability of cocrystals. Appropriate excipients should be included to control precipitation kinetics and to capture solubility advantage of cocrystals. Beside to solubility, cocrystals may modify membrane permeability of drugs. Therefore, cocrystals can find applications in improving oral bioavailability of poorly permeable drugs. It has been shown that cocrystals may interrupt cellular integrity of cellular monolayers which can raise toxicity concerns. Some of coformers may interact with intestinal absorption of drugs through changing intestinal blood flow, metabolism and inhibiting efflux pumps. Therefore, caution should be taken into account when conducting bioavailability studies. Nanosized cocrystals have shown a high potential towards improving absorption of poorly soluble drugs.
Conclusions: Cocrystals have found their way from the proof-of-principle stage to the clinic. Up to now, at least two cocrystal products have gained approval from regulatory bodies. However, there are remaining challenges on safety, predicting in vivo behavior and revealing real potential of cocrystals in the human.
Collapse
Affiliation(s)
- Shahram Emami
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Mechanisms underlying changes in indomethacin solubility with local anesthetics and related basic additives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Barmpalexis P, Grypioti A, Eleftheriadis GK, Fatouros DG. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming. AAPS PharmSciTech 2018; 19:741-752. [PMID: 28980185 DOI: 10.1208/s12249-017-0893-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022] Open
Abstract
In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).
Collapse
|
12
|
Azharshekoufeh L, Shokri J, Barzegar-Jalali M, Javadzadeh Y. Liquigroud technique: a new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies. ACTA ACUST UNITED AC 2017; 7:5-12. [PMID: 28546948 PMCID: PMC5439390 DOI: 10.15171/bi.2017.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Abstract
![]()
Introduction: The potential of combining liquisolid and co-grinding technologies (liquiground technique) was investigated to improve the dissolution rate of a water-insoluble agent (glibenclamide) with formulation-dependent bioavailability.
Methods: To this end, different formulations of liquisolid tablets with a wide variety of non-volatile solvents contained varied ratios of drug: solvent and dissimilar carriers were prepared, and then their release profiles were evaluated. Furthermore, the effect of size reduction by ball milling on the dissolution behavior of glibenclamide from liquisolid tablets was investigated. Any interaction between the drug and the excipient or crystallinity changes during formulation procedure was also examined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC).
Results: The present study revealed that classic liquisolid technique did not significantly affect the drug dissolution profile as compared to the conventional tablets. Size reduction obtained by co-grinding of liquid medication was more effective than the implementation of liquisolid technique in enhancing the dissolution rate of glibenclamide. The XRD and DSC data displayed no formation of complex or any crystallinity changes in both formulations.
Conclusion: An enhanced dissolution rate of glibenclamide is achievable through the combination of liquisolid and co-grinding technologies.
Collapse
Affiliation(s)
- Leila Azharshekoufeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Shokri
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|