1
|
Sousa GS, Martins BA, Mendes de Almeida Junior A, Queiroz RC, Tada DB, Camacho SA, Oliveira Jr. ON, Aoki PHB. Determining Molecular-Level Interactions of Carboxyl-Functionalized Nanodiamonds with Bacterial Membrane Models as the Basis for Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6186-6196. [PMID: 40023781 PMCID: PMC11912534 DOI: 10.1021/acs.langmuir.4c05173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Carbon-based nanostructures, such as carboxylated nanodiamonds (NDCOOHs), are promising to combat resistant bacterial strains by targeting their protective membranes. Understanding their interactions with bacterial membranes is therefore important for elucidating the mechanisms underlying NDCOOHs antimicrobial activity. In this study, we investigated the incorporation of NDCOOHs into lipid Langmuir monolayers mimicking cytoplasmic membranes of Escherichia coli and Staphylococcus aureus, model systems for Gram-negative and Gram-positive bacteria, respectively. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), we observed significant interactions between NDCOOHs and the polar head groups of the E. coli lipid monolayer, driven by electrostatic attraction to ammonium groups and repulsion from phosphate and carbonyl ester groups, limiting deeper penetration into the lipid chains. In contrast, S. aureus monolayers exhibited more pronounced changes in their hydrocarbon chains, indicating deeper NDCOOHs penetration. NDCOOHs incorporation increased the surface area of the E. coli monolayer by approximately 4% and reduced that of S. aureus by about 8%, changes likely attributed to lipid oxidation induced by superoxide and/or hydroxyl radicals generated by NDCOOHs. These findings highlight the distinct interactions of NDCOOHs with Gram-positive and Gram-negative lipid membranes, offering valuable insights for their development as targeted antimicrobial agents.
Collapse
Affiliation(s)
- Giovanna
Eller Silva Sousa
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Bruna Alves Martins
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | | | - Rafaela Campos Queiroz
- Institute
of Science and Technology, Federal University
of São Paulo (UNIFESP), São José dos Campos, SP 12231-280, Brazil
| | - Dayane Batista Tada
- Institute
of Science and Technology, Federal University
of São Paulo (UNIFESP), São José dos Campos, SP 12231-280, Brazil
| | - Sabrina Aléssio Camacho
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Osvaldo N. Oliveira Jr.
- São
Carlos Institute of Physics, University
of Sao Paulo (USP), São
Carlos, SP 13566-590, Brazil
| | - Pedro Henrique Benites Aoki
- School
of Sciences, Humanities and Languages, São
Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
2
|
Pivetta TP, Jochelavicius K, Wrobel EC, Balogh DT, Oliveira ON, Ribeiro PA, Raposo M. Incorporation of acridine orange and methylene blue in Langmuir monolayers mimicking releasing nanostructures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184156. [PMID: 37031871 DOI: 10.1016/j.bbamem.2023.184156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
The efficiency of methylene blue (MB) and acridine orange (AO) for photodynamic therapy (PDT) is increased if encapsulated in liposomes. In this paper we determine the molecular-level interactions between MB or AO and mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and cholesterol (CHOL) using surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). To increase liposome stability, the effects from adding the surfactants Span® 80 and sodium cholate were also studied. Both MB and AO induce an expansion in the mixed monolayer, but this expansion is less significant in the presence of either Span® 80 or sodium cholate. The action of AO and MB occurred via coupling with phosphate groups of DPPC or DPPG. However, the levels of chain ordering and hydration of carbonyl and phosphate in headgroups depended on the photosensitizer and on the presence of Span® 80 or sodium cholate. From the PM-IRRAS spectra, we inferred that incorporation of MB and AO increased hydration of the monolayer headgroup, except for the case of the monolayer containing sodium cholate. This variability in behaviour offers an opportunity to tune the incorporation of AO and MB into liposomes which could be exploited in the release necessary for PDT.
Collapse
Affiliation(s)
- Thais P Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Karen Jochelavicius
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Ellen C Wrobel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Debora T Balogh
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Tyler TJ, Durek T, Craik DJ. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023; 28:molecules28073189. [PMID: 37049950 PMCID: PMC10096437 DOI: 10.3390/molecules28073189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.
Collapse
Affiliation(s)
- Tristan J. Tyler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Dias SA, Pinto SN, Silva-Herdade AS, Cheneval O, Craik DJ, Coutinho A, Castanho MARB, Henriques ST, Veiga AS. A designed cyclic analogue of gomesin has potent activity against Staphylococcus aureus biofilms. J Antimicrob Chemother 2022; 77:3256-3264. [PMID: 36171717 DOI: 10.1093/jac/dkac309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Infections caused by bacterial biofilms are very difficult to treat. The use of currently approved antibiotics even at high dosages often fails, making the treatment of these infections very challenging. Novel antimicrobial agents that use distinct mechanisms of action are urgently needed. OBJECTIVES To explore the use of [G1K,K8R]cGm, a designed cyclic analogue of the antimicrobial peptide gomesin, as an alternative approach to treat biofilm infections. METHODS We studied the activity of [G1K,K8R]cGm against biofilms of Staphylococcus aureus, a pathogen associated with several biofilm-related infections. A combination of atomic force and real-time confocal laser scanning microscopies was used to study the mechanism of action of the peptide. RESULTS The peptide demonstrated potent activity against 24 h-preformed biofilms through a concentration-dependent ability to kill biofilm-embedded cells. Mechanistic studies showed that [G1K,K8R]cGm causes morphological changes on bacterial cells and permeabilizes their membranes across the biofilm with a half-time of 65 min. We also tested an analogue of [G1K,K8R]cGm without disulphide bonds, and a linear unfolded analogue, and found both to be inactive. CONCLUSIONS The results suggest that the 3D structure of [G1K,K8R]cGm and its stabilization by disulphide bonds are essential for its antibacterial and antibiofilm activities. Moreover, our findings support the potential application of this stable cyclic antimicrobial peptide to fight bacterial biofilms.
Collapse
Affiliation(s)
- Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Silva-Herdade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sónia T Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia.,School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Brisbane, QLD, 4102 Australia
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Penicillin-binding proteins (PBPs) determine antibiotic action in Langmuir monolayers as nanoarchitectonics mimetic membranes of methicillin-resistant Staphylococcus aureus. Colloids Surf B Biointerfaces 2022; 214:112447. [PMID: 35334310 DOI: 10.1016/j.colsurfb.2022.112447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/15/2023]
Abstract
The membrane of methicillin-resistant Staphylococcus aureus (MRSA) contains penicillin-binding proteins (PBPs) in the phospholipidic bilayer, with the protein PBP2a being linked with the resistance mechanism. In this work we confirm the role of PBP2a with molecular-level information obtained with Langmuir monolayers as cell membrane models. The MRSA cell membrane was mimicked with a mixed monolayer of dipalmitoyl phosphatidyl glycerol (DPPG) and cardiolipin (CL), also incorporating PBP2a. The surface pressure-area isotherms and the Brewster angle microscopy (BAM) images for these mixed monolayers were significantly affected by the antibiotic meropenem, which is PBP2a inhibitor. The meropenem effects were associated with the presence of PBP2a, as they were absent in the Langmuir monolayers without PBP2a. The relevance of PBP2a was confirmed with results where the antibiotic methicillin, known to be unsuitable to kill MRSA, had the same effects on mixed DPPG/CL and DPPG/CL-PBP2a monolayers since it prevented PBP2a from incorporating in the monolayer. The biological implication of the findings presented here is that a successful antibiotic against MRSA should be able to interact with PBP2a, but in the membrane.
Collapse
|
6
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
7
|
Saemi Yokomichi MA, Leite Silva HR, Eivazian Vianna Nogueira Brandao L, Festozo Vicente E, Batista Junior JM. Conformational preferences induced by cyclization in orbitides: a vibrational CD study. Org Biomol Chem 2022; 20:1306-1314. [DOI: 10.1039/d1ob02170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orbitides are bioactive head-to-tail natural cyclic peptides from plant species. Their bioactivity is intrinsically related to the main conformations adopted in solution, whose correct characterization represents an important bottleneck for...
Collapse
|
8
|
Vieira DS, Oliveira FTD, Suarez JAG, Silva DPD, Bernardo THL, Bastos MLDA. Biological activities: anti-infectious, antioxidant and healing of the vegetable species Jatropha multifida. Rev Bras Enferm 2021; 74:e20200451. [PMID: 34076218 DOI: 10.1590/0034-7167-2020-0451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE to investigate the biological activities of interest to the health of Jatropha multifida plant species in published scientific literature. METHODS this is an integrative review, with searches between May and June 2019, using the descriptors, combined through the Boolean operator AND, Jatropha multifida, anti-infective agents, wound healing, cytotoxicity and antioxidants, in LILACS, BDENF, MEDLINE, SciFinder, Web of Science and Scopus databases and in the virtual libraries SciELO and ScienceDirect. RESULTS twelve publications were retrieved that showed nine biological activities. The antioxidant activity was reported in 04 (33.33%) studies; antimicrobial and anticancer, addressed by 03 (25%) and 02 (16.66%); anti-inflammatory, anti-melanin deposition, healing, antiophidic, purgative and anti-influenza, seen in 01 (8.33%) each. FINAL CONSIDERATIONS although scarce, the published scientific production highlights the biological potential of J. multifida and supports the need for further studies.
Collapse
|
9
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
10
|
Almeida AM, Oliveira ON, Aoki PHB. Role of Toluidine Blue-O Binding Mechanism for Photooxidation in Bioinspired Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16745-16751. [PMID: 31746210 DOI: 10.1021/acs.langmuir.9b03045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The alarming increase in bacterial resistance to antibiotics has demanded new strategies for microbial inactivation, which include photodynamic therapy whose activity relies on the photoreaction damage to the microorganism membrane. Herein, the binding mechanisms of the photosensitizer toluidine blue-O (TBO) on simplified models of bacterial membrane with Langmuir monolayers of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) were correlated to the effects of the photoinduced lipid oxidation. Langmuir monolayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were also used as a reference of mammalian membranes. The surface pressure isotherms combined with polarization-modulated infrared reflection absorption spectroscopy revealed that TBO expands DOPC, DOPE, and DOPG monolayers owing to electrostatic interactions with the negatively charged groups in the phospholipids, with a stronger adsorption on DOPG, which has a net surface charge. Light irradiation made the TBO-containing DOPC and DOPE monolayers less unstable as a result of the singlet oxygen (1O2) reaction with the chain unsaturation and hydroperoxide formation. In contrast, the decreased stability of the irradiated TBO-containing DOPG monolayer suggests the cleavage of carbon chains. The anionic nature of DOPG allowed a deeper penetration of TBO into the chain region, favoring contact-dependent reactions between the excited triplet state of TBO and lipid unsaturations or/and hydroperoxide groups, which is the key for the cleavage reactions and further membrane permeabilization.
Collapse
Affiliation(s)
- Alexandre M Almeida
- São Paulo State University (UNESP) , School of Sciences, Humanities and Languages , Assis , SP , 19806-900 , Brazil
| | - Osvaldo N Oliveira
- IFSC , São Carlos Institute of Physics, University of São Paulo (USP) , São Carlos , SP 13566-590 , Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP) , School of Sciences, Humanities and Languages , Assis , SP , 19806-900 , Brazil
| |
Collapse
|
11
|
Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics 2019; 9:3191-3212. [PMID: 31244949 PMCID: PMC6567962 DOI: 10.7150/thno.33921] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cells utilize natural supramolecular assemblies to maintain homeostasis and biological functions. Naturally inspired modular assembly of biomaterials are now being exploited for understanding or manipulating cell biology for treatment, diagnosis, and detection of diseases. Supramolecular biomaterials, in particular peptides and oligonucleotides, can be precisely tuned to have diverse structural, mechanical, physicochemical and biological properties. These merits of oligonucleotides and peptides as building blocks have given rise to the evolution of numerous nucleic acid- and peptide-based self-assembling nanomaterials for various medical applications, including drug delivery, tissue engineering, regenerative medicine, and immunotherapy. In this review, we provide an extensive overview of the intracellular delivery approaches using supramolecular self-assembly of DNA, RNA, and peptides. Furthermore, we discuss the current challenges related to subcellular delivery and provide future perspectives of the application of supramolecular biomaterials for intracellular delivery in theranostics.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Ashwanikumar Narayana
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health Science University, Portland, OR
| |
Collapse
|
12
|
Barbosa SC, Nobre TM, Volpati D, Cilli EM, Correa DS, Oliveira ON. The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium. Sci Rep 2019; 9:1993. [PMID: 30760803 PMCID: PMC6374527 DOI: 10.1038/s41598-019-38551-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides are a promising class of new antibiotics with the ability to kill bacteria by disrupting their cell membrane, which is especially difficult for Gram-negative bacteria whose cell wall contains an outer layer of lipopolysaccharides (LPS). Here we show that the cyclic decapeptide Labaditin (Lo), with proven activity against the Gram-positive Staphylococcus aureus and Streptococcus mutans, is not able to kill the Gram-negative Salmonella enterica serovar Typhimurium (S.e.s. Typhimurium). We found that Lo induced significant changes in the surface pressure isotherms of Langmuir monolayers representing the Salmonella enterica serovar Typhimurium inner membrane (S.e.s. Typhimurium IM), and caused leakage in large unilamellar vesicles made with this IM lipid composition. On the basis of these results one should expect bactericidal activity against S.e.s. Typhimurium. However, Lo could not interact with a monolayer of LPS, causing no significant changes in either the surface pressure isotherms or in the polarization-modulated infrared reflection absorption spectra (PM-IRRAS). Therefore, the failure of Lo to kill S.e.s. Typhimurium is associated with the lack of interaction with LPS from the outer bacteria membrane. Our approach with distinct monolayer compositions and combined techniques to investigate molecular-level interactions is useful for drug design to fight antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Simone C Barbosa
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos-SP, Brazil
| | - Thatyane M Nobre
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos-SP, Brazil
| | | | - Eduardo M Cilli
- Universidade Estadual Paulista (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
13
|
Mendonça CMN, Balogh DT, Barbosa SC, Sintra TE, Ventura SPM, Martins LFG, Morgado P, Filipe EJM, Coutinho JAP, Oliveira ON, Barros-Timmons A. Understanding the interactions of imidazolium-based ionic liquids with cell membrane models. Phys Chem Chem Phys 2018; 20:29764-29777. [DOI: 10.1039/c8cp05035j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL–phospholipid interactions were studied using Langmuir monolayers and molecular simulations.
Collapse
Affiliation(s)
- Carlos M. N. Mendonça
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | | | - Tânia E. Sintra
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Sónia P. M. Ventura
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Luís F. G. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Pedro Morgado
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Eduardo J. M. Filipe
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João A. P. Coutinho
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | - Ana Barros-Timmons
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| |
Collapse
|