1
|
He N, Wang Z, Lei L, Chen C, Qin Y, Tang J, Dai K, Xu H. Enhancing high-efficient cadmium biosorption of Escherichia coli via cell surface displaying metallothionien CUP1. ENVIRONMENTAL TECHNOLOGY 2025; 46:1021-1030. [PMID: 39016212 DOI: 10.1080/09593330.2024.2375006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Cadmium (Cd) is one of the common heavy metal pollutants in soil, which can induce various diseases and pose a serious threat to human health. Metallothioneins (MTs) are well-known for their excellent metal binding ability due to a high content of cysteine, which has great potential for heavy metal chelation. In this study, we used the Escherichia coli (E. coli) surface display system LPP-OmpA to construct a recombinant plasmid pBSD-LCF encoding LPP-OmpA-CUP1-Flag fusion protein. Then we displayed the metallothionein CUP1 from Saccharomyces cerevisiae on E. coli DH5α surface for Cd removing. The feasibility of surface display of metallothionein CUP1 in recombinant E. coli DH5α (pBSD-LCF) by Lpp-OmpA system was proved by flow cytometry and western blot analysis, and the specificity of the fusion protein in the recombinant strain was also verified. The results showed that the Cd2+ resistance capacity of DH5α (pBSD-LCF) was highly enhanced by about 200%. Fourier-transform infrared spectroscopy showed that sulfhydryl and sulfonyl groups were involved in Cd2+ binding to cell surface of DH5α (pBSD-LCF). Meanwhile, Cd removal rate by DH5α (pBSD-LCF) was promoted to 95.2%. Thus, the recombinant strain E. coli DH5α (pBSD-LCF) can effectively chelate environmental metals, and the cell surface expression of metallothionein on E. coli can provide new ideas and directions for heavy metals remediation.
Collapse
Affiliation(s)
- Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Changxuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Yixian Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Jingxiang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Kecheng Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University and Department of Ecology and Environment of Sichuan, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Li Y, Cheng L, Yang B, Zhao Y, Ding Y, Zhou C, Wu Y, Dong R, Liu Y, Xu A. Remediation of Cd-As-Ni co-contaminated soil by extracellular polymeric substances from Bacillus subtilis: Dynamic improvements of soil properties and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177009. [PMID: 39423897 DOI: 10.1016/j.scitotenv.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
As the primary reservoir of heavy metals in nature, soil is highly susceptible to significant co-contamination with Cd-As-Ni. In current study, extracellular polymeric substances (EPS) from Bacillus subtilis were utilized as a novel improver to simultaneously enhance soil property and restrain ecotoxicity in Cd-As-Ni co-contaminated soil. Our findings revealed that EPS effectively bound and immobilized free Cd, As, and Ni in soil and decreased 49.73 % of soil available Cd, 79.16 % of As and 77.87 % of Ni contents by increasing soil pH, soil organic matter and cation exchange capacity. The EPS was also found to inhibit the Cd-As-Ni induced ecotoxicity in Caenorhabditis elegans by increasing the activities of antioxidant enzymes including superoxide dismutase, glutathione, and catalase. The remediation of EPS showed progressive improvement over time, and maintained a lasting effect after achieving peak efficiency. Our results might provide a new perspective on the potential of EPS in remediation of soil heavy metal pollution and the development and utilization of microbial biomass resources in a wider range.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuting Ding
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Chenxi Zhou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuanyuan Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Ruoyun Dong
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| |
Collapse
|
3
|
Li P, Chen J, Ying S, Chen N, Fang S, Ye M, Zhang C, Li C, Ge Y. Different responses of Sinorhizobium sp. upon Pb and Zn exposure: Mineralization versus complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123260. [PMID: 38159637 DOI: 10.1016/j.envpol.2023.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lead (Pb) and zinc (Zn) have been discharged into environment and may negatively impact ecological security. Rhizobia has gained attention due to their involvement in the restoration of metal polluted soils. However, little is known about the responses of rhizobia under Pb and Zn stress, especially the roles played by extracellular polymeric substances (EPS) in the resistance of these two metals. Here, Sinorhizobium sp. C10 was isolated from soil around a mining area and was exposed to a series of Pb/Zn treatments. The cell morphology and surface mineral crystals, EPS content and fluorescent substances were determined. In addition, the extracellular polysaccharides and proteins were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that Zn stress induced the synthesis of EPS by C10 cells. Functional groups of polysaccharides (CO) and proteins (C-O/C-N) were involved in complexation with Zn. In contrast, C10 resisted Pb stress by forming lead phosphate (Pb3(PO4)2) on the cell surface. Galactose (Gal) and tyrosine played key roles in resistance to the Zn toxicity, whereas glucosamine (N-Glc) was converted to glucose in large amounts during extracellular Pb precipitation. Together, this study demonstrated that C10 possessed different strategies to detoxify the two metals, and could provide basis for bioremediation of Pb and Zn polluted sites.
Collapse
Affiliation(s)
- Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Ying
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nike Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chonghua Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Luo K, Chen L, Zhao Y, Peng G, Chen Z, Chen Q. Transcriptomics uncover the response of an aerobic denitrifying bacteria to zinc oxide nanoparticles exposure. ENVIRONMENTAL TECHNOLOGY 2023; 44:3685-3697. [PMID: 35466863 DOI: 10.1080/09593330.2022.2069517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) show adverse impacts on aerobic denitrifying bacteria, little is known about the response of these bacteria to ZnO NPs exposure at cellular level. This study assessed the multiple responses of Pseudomonas aeruginosa PCN-2 under ZnO NPs exposure. We demonstrated that ZnO NPs exposure could inhibit the intracellular metabolism and stimulate the antioxidant defence capability of PCN-2. At lower exposure concentration (5 mg/L), exogenous ROS generated and resulted in the inhibition of pyruvate metabolism and citrate cycle, which caused deficient energy for aerobic denitrification. At higher concentrations (50 mg/L), endogenous ROS additionally generated and triggered to stronger down-regulation of oxidative phosphorylation, which caused suppressed electron transfers for aerobic denitrification. Meanwhile, ZnO NPs exposure promoted EPS production and biofilm formation, and antioxidases was especially particularly stimulated at higher concentration. Our findings are significant for understanding of microbial bacterial susceptibility, tolerance and resistance under the exposure of ZnO NPs.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Guyu Peng
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| |
Collapse
|
5
|
Mathivanan K, Uthaya Chandirika J, Srinivasan R, Emmanuel Charles P, Rajaram R, Zhang R. Exopolymeric substances production by Bacillus cereus KMS3-1 enhanced its biosorption efficiency in removing Cd 2+ and Pb 2+ in single and binary metal mixtures. ENVIRONMENTAL RESEARCH 2023; 228:115917. [PMID: 37062474 DOI: 10.1016/j.envres.2023.115917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
The present study investigated the growth, exopolymeric substance (EPS) production, and biosorption efficiency of strain Bacillus cereus KMS3-1 in the Cd2+ and Pb2+ ions containing single and binary metal-treated broth (50 mg/L). In addition, the interaction of the KMS3-1 strain with Cd2+ and Pb2+ ions in single and binary metal-treated broths was investigated using SEM-EDS, FTIR, and XRD analyses. The results showed that the biosorption efficiency (%) and EPS production of KMS3-1 biomass in both single and binary metal-treated broths had increased with increasing incubation time and were higher for Pb2+ ions than for Cd2+ ions. In the single and binary metal-treated broths, the maximum biosorption efficiency of KMS3-1 for Pb2+ ions were 70.8% and 46.3%, respectively, while for Cd2+ ions, they were 29.3% and 16.8%, respectively, after 72 h. Moreover, the biosorption efficiency of strain KMS3-1 for both metal ions was dependent on its EPS production and peaked at the maximum EPS production. The copious EPS production by KMS3-1 was observed in metal-treated media (50 mg/L), in the following order: Pb2+ ions (1925.7 μg/mL) > binary metal mixtures (1286.8 μg/mL) > Cd2+ ions (1185.5 μg/mL), > control (1099 μg/mL) after 72 h of incubation. This result indicates that the metal biosorption efficiency of the KMS3-1 strain was enhanced by the increased EPS production in the surrounding metal-treated broth. SEM-EDS and FTIR characterization studies revealed that the KMS3-1 biomass effectively adsorbed Cd2+ and Pb2+ ions from the medium by interacting with their surface functional groups (hydroxyl, carbonyl, carboxyl, amide, and phosphate). Moreover, the biosorbed Cd2+ and Pb2+ ions were transformed into CdS and PbS, respectively, by the KMS3-1 biomass. This study suggests that the Bacillus cereus KMS3-1 strain may be a promising candidate for the treatment of metal contamination.
Collapse
Affiliation(s)
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Rajendran Srinivasan
- Department of Fisheries Science, School of Marine Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ruiyong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Li X, Xiao Q, Shao Q, Li X, Kong J, Liu L, Zhao Z, Li R. Adsorption of Cd (II) by a novel living and non-living Cupriavidus necator GX_5: optimization, equilibrium and kinetic studies. BMC Chem 2023; 17:54. [PMID: 37316907 DOI: 10.1186/s13065-023-00977-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Biosorbents have been extensively studied for heavy metal adsorption due to their advantages of low cost and high efficiency. In the study, the living and non-living biomass of Cupriavidus necator GX_5 previously isolated were evaluated for their adsorption capacity and/or removal efficiency for Cd (II) through batch experiments, SEM and FT-IR investigations. The maximum removal efficiency rates for the live and dead biomass were 60.51% and 78.53%, respectively, at an optimum pH of 6, a dosage of 1 g/L and an initial Cd (II) concentration of 5 mg/L. The pseudo-second-order kinetic model was more suitable for fitting the experimental data, indicating that the rate-limiting step might be chemisorption. The Freundlich isotherm model fit better than the Langmuir isotherm model, implying that the adsorption process of both biosorbents was heterogeneous. FT-IR observation reflected that various functional groups were involved in Cd (II) adsorption: -OH, -NH, C=O, C-O and C-C groups for the living biomass and -OH, -NH, C-H, C = O, C-N and N-H groups for the dead biomass. Our results imply that non-living biosorbents have a higher capacity and stronger strength for absorbing Cd (II) than living biomass. Therefore, we suggest that dead GX_5 is a promising adsorbent and can be used in Cd (II)-contaminated environments.
Collapse
Affiliation(s)
- Xingjie Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China.
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China.
| | - Qiusheng Xiao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China
| | - Qin Shao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Xiaopeng Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
| | - Jiejie Kong
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Liyan Liu
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Zhigang Zhao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
| | - Rungen Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China
| |
Collapse
|
7
|
Naderi A, Kakavandi B, Giannakis S, Angelidaki I, Rezaei Kalantary R. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance. ENVIRONMENTAL RESEARCH 2023; 229:115843. [PMID: 37068722 DOI: 10.1016/j.envres.2023.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), C/Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Mo J, Jin J, Yu H, Ai M, Hu D, Li L, Song K. Biosynthesis of gold nanoparticles in the fruiting body of enoki mushrooms (
Flammulina velutipes
) under Pb
2+
induction. IET Nanobiotechnol 2022; 17:61-68. [PMID: 36401804 PMCID: PMC10116022 DOI: 10.1049/nbt2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Fungi can produce many compounds, such as proteins, enzymes, amino acids, and polysaccharides, which are internalised and enriched for metals, and are widely used as reducing and stabilising agents for the biosynthesis of gold nanoparticles (Au NPs). Almost all fungal sources used in the synthesis of the Au NPs are in the form of cell filtrates or mycelial suspensions. However, the culture of cell-free fungal filtrate and mycelium is not comparable to the propagation of fungal substrates in input and operation. Here, we evaluated in vivo biosynthesis of Au NPs in enoki mushrooms (Flammulina velutipes). HAuCl4 was reduced in the fruiting body of the enoki mushrooms via induction by Pb2+ , resulting in the generation of Au NPs. We then employed UV-Vis absorption spectroscopy, Transmission Electron Microscope, and Energy Dispersive Spectrometer to characterise various shapes of the Au NPs. The elemental analysis indicated that the Au NPs were mainly concentrated in organelles of the stalk and cap cells. We also demonstrated that 0.3-0.5 mM HAuCl4 was the optimal stress treatment concentration based on the changes in physiological indicators of the enoki mushrooms. This work reveals that fungi can be utilised well as nanomaterial bioreactors.
Collapse
Affiliation(s)
- Jingang Mo
- School of Life Science Changchun Normal University Changchun China
| | - Jun Jin
- School of Life Science Changchun Normal University Changchun China
| | - Han Yu
- School of Life Science Changchun Normal University Changchun China
| | - Mingjun Ai
- School of Life Science Changchun Normal University Changchun China
| | - Die Hu
- School of Life Science Changchun Normal University Changchun China
| | - Linlin Li
- School of Life Science Changchun Normal University Changchun China
| | - Kai Song
- School of Life Science Changchun Normal University Changchun China
- Institute of Science, Technology and Innovation Changchun Normal University Changchun China
| |
Collapse
|
9
|
Soluble Extracellular Polymeric Substances Produced by Parachlorella kessleri and Chlorella vulgaris: Biochemical Characterization and Assessment of Their Cadmium and Lead Sorption Abilities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217153. [PMID: 36363977 PMCID: PMC9653888 DOI: 10.3390/molecules27217153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022]
Abstract
In the present study, the potential of lead and cadmium removal by the extracellular polymeric substances (EPS) produced from Parachlorella kessleri and Chlorella vulgaris were investigated. Carbohydrates were the dominant components of EPS from both analyzed species. The contents of reducing sugars, uronic acids, and amino acids were higher in EPS synthesized by C. vulgaris than in EPS from P. kessleri. The analysis of the monosaccharide composition showed the presence of rhamnose, mannose and galactose in the EPS obtained from both species. The ICP-OES (inductively coupled plasma optical emission spectrometry) analyses demonstrated that C. vulgaris EPS showed higher sorption capacity in comparison to P. kessleri EPS. The sorption capacity of C. vulgaris EPS increased with the increase in the amount of metal ions. P. kessleri EPS had a maximum sorption capacity in the presence of 100 mg/L of metal ions. The FTIR analysis demonstrated that the carboxyl, hydroxyl, and carbonyl groups of EPS play a key role in the interactions with metal ions. The present study showed C. vulgaris EPS can be used as a biosorbent in bioremediation processes due to its biochemical composition, the presence of significant amounts of negatively charged uronic acids, and higher sorption capacity.
Collapse
|
10
|
Qian Y, Han W, Zhou F, Ji B, Zhang H, Zhang K. Effects of Pressurized Aeration on the Biodegradation of Short-Chain Chlorinated Paraffins by Escherichia coli Strain 2. MEMBRANES 2022; 12:634. [PMID: 35736341 PMCID: PMC9227625 DOI: 10.3390/membranes12060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Short-chain chlorinated paraffins (SCCPs) were defined as persistent organic pollutants in 2017, and they can migrate and transform in the environment, accumulate in organisms, and amplify through the food chain. Although they pose a serious threat to environmental safety and human health, there are few papers on their removal. The current SCCP removal methods are expensive, require severe operating conditions, involve time-consuming biological treatment, and have poor removal specificities. Therefore, it is important to seek efficient methods to remove SCCPs. In this paper, a pressurized reactor was introduced, and the removal performance of SCCPs by Escherichia coli strain 2 was investigated. The results indicated that moderate pure oxygen pressurization promoted bacterial growth, but when it exceeded 0.15 MPa, the bacterial growth was severely inhibited. When the concentration of SCCPs was 20 mg/L, the removal rate of SCCPs was 85.61% under 0.15 MPa pure oxygen pressurization for 7 days, which was 25% higher than at atmospheric pressure (68.83%). In contrast, the removal rate was only 69.28% under 0.15 MPa air pressure. As the pressure continued to increase, the removal rate of SCCPs decreased significantly. The total amount of extracellular polymeric substances (EPS) increased significantly upon increasing the pressure, and the amount of tightly bound EPS (TB-EPS) was higher than that of loosely bound EPS (LB-EPS). The pressure mainly promoted the secretion of proteins in LB-EPS. Furthermore, an appropriate pure oxygen pressure of 0.15 MPa improved the dehydrogenase activity. The gas chromatography-mass spectrometry (GC-MS) results indicated that the degradation pathway possibly involved the cleavage of the C-Cl bond in SCCPs, which produced Cl-, followed by C-C bond breaking. This process degraded long-chain alkanes into short-chain alkanes. Moreover, the main degradation products detected were 2,4-dimethylheptane (C9H20), 2,5-dimethylheptane (C9H20), and 3,3-dimethylhexane (C8H18).
Collapse
Affiliation(s)
- Yongxing Qian
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wanling Han
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fuhai Zhou
- Zhejiang Haiyi Environmental Protection Equipment Engineering Co., Ltd., Quzhou 324000, China;
| | - Bixiao Ji
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Huining Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Kefeng Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
11
|
Lian Z, Yang Z, Song W, Sun M, Gan Y, Bai X. Effects of different exogenous cadmium compounds on the chemical composition and adsorption properties of two gram-negative bacterial EPS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150511. [PMID: 34583067 DOI: 10.1016/j.scitotenv.2021.150511] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Three different Cd(II) compounds were used to regulate Pseudomonas aeruginosa and Alcaligenes faecalis EPS (extracellular polymeric substances). The purpose of this study was to improve the content of EPS protein and the adsorption capacity of Cd(II) by different Cd(II) compounds. The results showed that Cd(NO3)2 had the best stress/induction effect on the two strains. Under the best stress/induction, the protein in EPS of the two strains increased most obviously, and the adsorption capacity of Cd(II) was increased by more than 40%. Under these conditions, the kinetics of the adsorption process of Cd(II) by Cd(NO3)2-EPSA. F (EPS produced by Alcaligenes faecalis under Cd(NO3)2 stress) could be well fitted by the Langmuir isotherm model, and the theoretical maximum adsorption amount of 1111.11 mg/g EPS could be obtained. The results of 3D-EEM, FTIR and XPS indicated that proteins, especially CO, CN and NH in proteins, played a major role in the removal of Cd(II) by Cd(NO3)2-EPSA. F. The results of this study show that the addition of Cd(NO3)2 can effectively regulate the content of chemical components, especially the content of protein, and thus greatly improve the removal efficiency of heavy metals, which shows great application prospects in the prevention and control of heavy metal pollution.
Collapse
Affiliation(s)
- Zeyang Lian
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zuoyi Yang
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Weifeng Song
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Mengge Sun
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Gan
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Bai
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
12
|
Biosorption of Pb 2+ and Zn 2+ by Ca-alginate immobilized and free extracellular polysaccharides produced by Leuconostoc citreum B-2. Int J Biol Macromol 2021; 193:2365-2373. [PMID: 34798193 DOI: 10.1016/j.ijbiomac.2021.11.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023]
Abstract
AIMS Heavy metal pollution seriously threatens human health and ecological environment. Due to high efficiency and excellent development prospect, adsorption technology has attracted worldwide attention. It is significant to develop renewable adsorbents with excellent adsorption performance. SCOPE In this study, the Pb2+ and Zn2+ adsorption capacity of Ca-alginate immobilized and free (without immobilization) Leu. citreum B-2 extracellular polysaccharides (EPS) was investigated. Isotherm and kinetic models were used to evaluate the adsorption performance. The adsorbents were characterized by SEM, FT-IR and XPS spectroscopy. CONCLUSIONS The maximum biosorption of Pb2+ 269.54 and Zn2+ 49.88 mg/g was achieved with immobilized EPS. Thermodynamic studies showed that the adsorption of Pb2+ and Zn2+ on EPS was a spontaneous and feasible process, and the adsorption properties of EPS were exothermic for lead and endothermic for zinc. All the adsorption processes conformed to the pseudo-second-order model and Langmuir adsorption isotherm model, indicating that the adsorption was mainly chemisorption taken placed on single adsorption surface. SEM results showed that the surface of EPS become denser after adsorption. FTIR and XPS analysis indicated that the adsorption mechanism mainly involved the complexation reaction and ion exchange of functional groups such as CO, O-C-O, -COOH and C-OH.
Collapse
|
13
|
Lin H, Chen G, Zhao H, Cao Y. Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113458. [PMID: 34358938 DOI: 10.1016/j.jenvman.2021.113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas putida is potentially used in the bioremediation of heavy metals (HMs). Its response to different HMs in different environments is still not fully understood. This study investigated resistance against 12 kinds of metals by P. putida CZ1 planktonic cells and its biofilm in LB and mineral medium (MM). P. putida CZ1 biofilms have high resistance and accumulation capacity for Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, Al3+ and Ni2+, but less resistance to Co2+, Cd2+, Cr2O72-, Ag+ and Hg2+. Biofilms were 2-8 times more resistant to Cu2+ and Zn2+ than planktonic cells. There was a strong correlation between the P content and the accumulation of Cu2+, Zn2+, Fe3+, Mn2+, Pb2+, Ni2+and Al3+ respectively. Confocal laser scanning microscopy (CLSM) combined with live/dead staining study found that cells in the biofilms can keep viable after 36 h under MIC of Cu2+ or Zn2+ both in LB and MM. When the metal concentration increased, cells can be killed gradually. For Cu2+, Zn2+, Fe3+, Mn2+, Pb2+ and Ni2+, higher resistance was found in MM (2-4 times higher) than in LB and higher accumulation of these metals were also found in MM. P. putida CZ1 biofilm cultured in MM with citric acid as carbon source had stronger resistance and accumulation ability to Cu2+, Zn2+, Pb2+, Fe3+, Mn2+, and Ni2+. This suggested that P. putida CZ1 had greater remediation potential for these metals in organic acid rich environments.
Collapse
Affiliation(s)
- Huirong Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Guangcun Chen
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Hongmei Zhao
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuanqing Cao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510080, PR China
| |
Collapse
|
14
|
Chang T, Babu RP, Zhao W, Johnson CM, Hedström P, Odnevall I, Leygraf C. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49402-49413. [PMID: 34618446 PMCID: PMC8532116 DOI: 10.1021/acsami.1c11236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mechanisms of bacterial contact killing induced by Cu surfaces were explored through high-resolution studies based on combinations of the focused ion beam (FIB), scanning transmission electron microscopy (STEM), high-resolution TEM, and nanoscale Fourier transform infrared spectroscopy (nano-FTIR) microscopy of individual bacterial cells of Gram-positive Bacillus subtilis in direct contact with Cu metal and Cu5Zn5Al1Sn surfaces after high-touch corrosion conditions. This approach permitted subcellular information to be extracted from the bioinorganic interface between a single bacterium and Cu/Cu5Zn5Al1Sn surfaces after complete contact killing. Early stages of interaction between individual bacteria and the metal/alloy surfaces include cell leakage of extracellular polymeric substances (EPSs) from the bacterium and changes in the metal/alloy surface composition upon adherence of bacteria. Three key observations responsible for Cu-induced contact killing include cell membrane damage, formation of nanosized copper-containing particles within the bacteria cell, and intracellular copper redox reactions. Direct evidence of cell membrane damage was observed upon contact with both Cu metal and Cu5Zn5Al1Sn surfaces. Cell membrane damage permits copper to enter into the cell interior through two possible routes, as small fragmentized Cu2O particles from the corrosion product layer and/or as released copper ions. This results in the presence of intracellular copper oxide nanoparticles inside the cell. The nanosized particles consist primarily of CuO with smaller amounts of Cu2O. The existence of two oxidation states of copper suggests that intracellular redox reactions play an important role. The nanoparticle formation can be regarded as a detoxification process of copper, which immobilizes copper ions via transformation processes within the bacteria into poorly soluble or even insoluble nanosized Cu structures. Similarly, the formation of primarily Cu(II) oxide nanoparticles could be a possible way for the bacteria to deactivate the toxic effects induced by copper ions via conversion of Cu(I) to Cu(II).
Collapse
Affiliation(s)
- Tingru Chang
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet, KTH Royal Institute
of Technology, SE-171 77 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - R. Prasath Babu
- Department
of Materials Science and Engineering, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Weijie Zhao
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - C. Magnus Johnson
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Peter Hedström
- Department
of Materials Science and Engineering, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet, KTH Royal Institute
of Technology, SE-171 77 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Christofer Leygraf
- Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| |
Collapse
|
15
|
Wang J, Chen R, Fan L, Cui L, Zhang Y, Cheng J, Wu X, Zeng W, Tian Q, Shen L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Ma TF, Chen YP, Yan P, Fang F, Shen Y, Mao Z, Guo JS, Zhao B, Feng L. Adaptation mechanism of aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle stresses. ENVIRONMENTAL RESEARCH 2021; 197:111178. [PMID: 33865818 DOI: 10.1016/j.envres.2021.111178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The adaptation mechanism of a wild type (WT) and resistant type (Re) strain of the aerobic denitrifier Enterobacter cloacae strain HNR to short-term ZnO nanoparticle (NP) stresses was investigated. The results showed that Re maintained higher nitrite reductase (NIR) and nitrate reductase (NR) activities and showed lower increment of reactive oxygen species (ROS) than WT, under ZnO NP stresses. The affinity constant (KA) of WT to Zn2+ was 5.06 times that of Re, indicating that Re was more repulsive to Zn2+ released by ZnO NPs. Transcriptomic analysis revealed that the up-regulation of the nitrogen metabolism of Re helped maintain NIR and NR activities, that the enhancement of purine metabolism lowered the intracellular ROS increment, and that the up-regulation of cationic antimicrobial peptide resistance contributed to the lower KA of Re to Zn2+. These findings provided new insights into the adaptation mechanism of aerobic denitrifying bacteria to ZnO NPs.
Collapse
Affiliation(s)
- Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400069, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Li Feng
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecological and Environmental Sciences, Chongqing, 401147, China
| |
Collapse
|
17
|
Guo T, Gustave W, Lu H, He Y, Tang X, Buchwalter DB, Xu J. Periphyton enhances arsenic release and methylation at the soil-water interface of paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124946. [PMID: 33388452 DOI: 10.1016/j.jhazmat.2020.124946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Periphyton is ubiquitous in rice paddy fields, however its role in paddy soil arsenic (As) biogeochemistry remains unexplored. In this study, microcosm incubations and extensive field sampling were used to better understand the roles of periphyton on As mobility and transformation at the soil-water interface. Microcosm incubations revealed that periphyton on the paddy soil surface enhanced As release to water and increased methylated As contents at the soil-water interface. Experimental additions of dissolved phosphate did not significantly affect these processes. The presence of periphyton increased the dissolved organic carbon (DOC) content of the surface soil which may have played a role in the increased As mobility. However, the increase in methylated As species at the soil-water interface is indicative of detoxification processes of As by periphyton. The results from the field study revealed a high abundance and diversity of As biotransformation and detoxification genes in periphyton. Genera of Kineosporia, Limisphaera, Ornatilinea, Ktedonosporobacter and Anaerolinea played key roles in shaping arsM harboring microbe communities in field periphyton. These results highlight the importance of periphyton in the behavior of As in paddy soils and can potentially facilitate improved management of As contamination in paddy soils.
Collapse
Affiliation(s)
- Ting Guo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, New Providence, The Bahamas
| | - Haiying Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
18
|
Ma TF, Chen YP, Fang F, Yan P, Shen Y, Kang J, Nie YD. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138284. [PMID: 32276046 DOI: 10.1016/j.scitotenv.2020.138284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aerobic denitrification process is a promising and cost-effective alternative to the conventional nitrogen removal process. Widely used ZnO nanoparticles (NPs) will inevitably reach wastewater treatment plants, and cause adverse impacts on aerobic denitrification and nitrogen removal. Therefore, a full understanding of the responses and adaption of aerobic denitrifiers to ZnO NPs is essential to develop effective strategies to reduce adverse effects on wastewater treatment. In this study, the responses and adaption to ZnO NPs were investigated of a wild type strain (WT) and a resistant type strain (Re) of aerobic denitrifying bacteria Enterobacter cloacae strain HNR. When exposed to 0.75 mM ZnO NPs, the nitrate removal efficiency of Re was 11.2% higher than that of WT. To prevent ZnO NPs entering cells by adsorption, the production of extracellular polymeric substances (EPS) of WT and Re strains increased 13.2% and 43.9%, respectively. The upregulations of amino sugar and carbohydrate-related metabolism contributed to the increase of EPS production, and the increased nitrogen metabolism contributed to higher activities of nitrate and nitrite reductases. Interestingly, cationic antimicrobial peptide resistance contributed to resist Zn (II) released by ZnO NPs, and many antioxidative stress-related metabolism pathways were upregulated to resist the oxidative stress resulting from ZnO NPs. These findings will guide efforts to improve the aerobic denitrification process in an environment polluted by NPs, and promote the application of aerobic denitrification technologies.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - Jia Kang
- North China Univ Water Resources & Elect Power, Key Lab Water Environment Simulatation & Governance Henan, Zhengzhou 460046, Henan, China
| | - Yu-Dong Nie
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
19
|
Huang H, Jia Q, Jing W, Dahms HU, Wang L. Screening strains for microbial biosorption technology of cadmium. CHEMOSPHERE 2020; 251:126428. [PMID: 32169714 DOI: 10.1016/j.chemosphere.2020.126428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 05/23/2023]
Abstract
Heavy metals contaminate the environment and provide a threat to public health through drinking water and food chain. Microbial biosorption technology provides a more economical and competitive solution for bioremediation of toxicants such as heavy metals, and microbial genetic modification may modify microbes towards optimal sorption. It is very important to screen suitable strains for this purpose. In this study, three different types of microorganisms Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae were isolated and identified, from uncontaminated soils, and compared their sorption differences with respect to cadmium (Cd2+). We evaluated the effects of contact time and initial concentration on Cd2+ uptake, and found pseudo-second-order kinetic models were more suitable to describe biosorption processes. Adsorption isotherms were used to reflect their biosorption capacity. The maximum biosorption capacities of three strains calculated by the Langmuir model were 37.764, 56.497, and 22.437 mg Cd/g biomass, respectively. In bacteria, Cd2+ biosorption mainly occurred on cell wall, while the difference in biosorption between yeast inside and outside the cell was not significant. We found that due to the structural differences, the removal rate of E. coli surface decreased at a high concentration, while S. cerevisiae still had a lower biosorption capacity. FTIR spectroscopy reflected the difference in functional groups involved in biosorption by three strains. SEM-EDS analysis showed the binding of Cd2+ to microorganisms mainly relied on ion exchange mechanism. Based on the above results, we suggested that B. subtilis is more suitable to get genetically modified for heavy metal biosorption.
Collapse
Affiliation(s)
- Haojie Huang
- School of Life Science, Shanxi University, Taiyuan, Shanxi province, 030006, China
| | - Qingyun Jia
- School of Life Science, Shanxi University, Taiyuan, Shanxi province, 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, Taiyuan, Shanxi province, 030006, China
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi province, 030006, China.
| |
Collapse
|
20
|
Li J, Zheng T, Yuan D, Gao C, Liu C. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms. CHEMOSPHERE 2020; 249:126039. [PMID: 32062202 DOI: 10.1016/j.chemosphere.2020.126039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 05/24/2023]
Abstract
Many research focused on the removal of perfluorooctane sulfonic acid (PFOS) and hexavalent chromium (Cr(VI)) in some industrial wastewater (e.g. electroplating wastewater), but few research reported the combined toxicity of PFOS and Cr(VI) to soil bacteria. Therefore, the toxicity and mechanisms of the combined PFOS and Cr(VI) to bacteria (with Bacillus subtilis as a model) are explored. The results show that the combined PFOS and Cr(VI) exhibits much higher toxicity to the bacteria than that of Cr(VI) alone. The growth profile of Bacillus subtilis exposed by the combined pollution decreased by 18% and 56%, respectively, compared with that of single Cr(VI) and the control, indicating the combined toxicity to Bacillus subtilis is synergistic. Moreover, the changes of EPSs in Bacillus subtilis, such as decreased potential, increased extracellular polysaccharides, decreased extracellular proteins and irregular morphology, also confirmed that the combined PFOS and Cr(VI) caused greater toxicity. The increase of intracellular ROS and permeability of dye 4', 6-diamidino-2-phenylindoledihydrochloride (DAPI) suggest that oxidative damage and increased membrane permeability are the main mechanisms of toxicity induced by the combined PFOS and Cr(VI). This work could provide useful information for the risk assessment of co-exposure to PFOS and heavy metals in the natural environment.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong Province, 36# Lishan Road, Jinan, 250013, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
21
|
Zhang J, Zhou F, Liu Y, Huang F, Zhang C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135368. [PMID: 31831249 DOI: 10.1016/j.scitotenv.2019.135368] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 05/27/2023]
Abstract
Inorganic arsenic (iAs) in its dominant dissolved phase in the environment is known to pose major threats to ecological and human health. While the biological effects in many arsenic-bearing freshwaters have been extensively studied, the behavior and bioaccumulation of dissolved iAS in the presence of extracellular polymeric substances (EPS) still remains to be a critical knowledge gap. In this study, the uptakes and kinetic characteristics of iAs were studied using Chlorella pyrenoidosa (a typical freshwater green algae) by addressing the different effects of EPS on arsenite (AsШ) and arsenate (AsV). The arsenic uptake capacity increased as the exposure concentration increased from 0 to 300 µmol L-1, and the uptake rate constants (Ku) in the Bio-dynamic model were greater for AsV than AsШ (0.63-11.57 L g-1 h-1 vs. 0.44-5.43 L g-1 h-1). The toxic effects as mitigated by EPS were observed through the morphological changes of algal cells by TEM and SEM. When compared with the EPS-free algal cells (EPS-F), EPS-covered cells (EPS-C) had a higher arsenic adsorption capacity through EPS-enhanced surface adsorption and reduced intracellular uptake. The overall decrease (35% and 23.3% for AsШ and AsV, respectively) in the maximum uptake capacity in intact algae cells favors cell's tolerance to the toxic effects of iAs. These observed discrepancies between AsШ and AsV and between EPS-C and EPS-F were further elucidated through morphological images (TEM and SEM) and molecular/atomic spectroscopic data that combine three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Altogether, the spectroscopic evidence revealed the interactions of iAs with C-O-C, C-O-H and -NH2 functional groups in EPS' tyrosine- and tryptophan-like proteins as the binding sites. Overall, this study for the first time provides comprehensive evidence on the iAs-EPS interactions. Such insights will benefit our understanding of the biogeochemical processes of iAs and the strategic development of bioremediation techniques involving microalgae in the natural and engineered systems.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China; National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China.
| | - Fang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Yaoxuan Liu
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Fei Huang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, China
| | - Chunlong Zhang
- Department of Environmental Science, University of Houston-Clear Lake, Houston, TX 77058, United States
| |
Collapse
|
22
|
Liu Z, Zhou L, Liu F, Gao M, Wang J, Zhang A, Liu Y. Impact of Al-based coagulants on the formation of aerobic granules: Comparison between poly aluminum chloride (PAC) and aluminum sulfate (AS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:74-84. [PMID: 31174125 DOI: 10.1016/j.scitotenv.2019.05.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
As widely used Al-based coagulants, poly aluminum chloride (PAC) and aluminum sulfate (AS) were adopted in a short term at the start-up stage (from 10th to 16th) to enhance the formation of aerobic granules, and their effects on aerobic granulation were elucidated. The results suggested that both PAC and AS facilitated the granulation by improving the physicochemical properties of sludge. The reactor performance in pollutant removal was also enhanced. Specifically, in terms of extracellular polymeric substances (EPS), PAC dosing mainly stimulated the production of loosely bound EPS (LB-EPS), whereas more tightly bound EPS (TB-EPS) were secreted with the presence of AS. Based on the elemental analysis, polymeric Al hydrolyzed from PAC mainly worked on the exterior of microbial aggregates, and thus the attached aluminum in granules was gradually eliminated by ion exchange and hydraulic shear force. In contrast, the aluminum species in AS hydrolyzed into monomeric and oligomeric Al, and thus could diffuse into the interior of microbial aggregates and eventually created an "Al-core" in the granules. Overall, the present study describes the AGS formation with Al-based coagulants and the mechanisms of PAC- and AS-enhanced aerobic granulation.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lichao Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Fengdan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
23
|
Ma B, Li Z, Wang S, Liu Z, Li S, She Z, Yu N, Zhao C, Jin C, Zhao Y, Guo L, Gao M. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:81-89. [PMID: 31071636 DOI: 10.1016/j.envpol.2019.04.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 05/27/2023]
Abstract
The performance, nitrogen removal rate, microbial enzymatic activity and extracellular polymeric substances (EPS) of activated sludge were assessed under nickel (Ni(II)) stress. The organic matter and NH4+-N removal efficiencies were stable at less than 10 mg/L Ni(II) and subsequently decreased with the increment of Ni(II) concentration from 10 to 30 mg/L. The specific oxygen uptake rate and dehydrogenase activity kept stable at less than 5 mg/L Ni(II) and then declined at 5-30 mg/L Ni(II). Both specific ammonia-oxidizing rate (SAOR) and specific nitrite-oxidizing rate (SNOR) decreased with the increment of Ni(II) concentration. The changing trends of ammonia monooxygenase and nitrite oxidoreductase activities were matched those of SAOR and SNOR, respectively. The nitrite-reducing rate and nitrate-reducing rate illustrated a similar variation tendency to the nitrite reductase activity and nitrate reductase activity, respectively. Ni(II) impacted on the production, chemical composition and functional group of EPS. The relation between the sludge volume index and the EPS production exhibited a better linear function with a negative slope, demonstrating that Ni(II) improved the sludge settleability despite of the increase of EPS production.
Collapse
Affiliation(s)
- Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Sen Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhaozhe Liu
- Qingjian International Group Co., Ltd, Qingdao, 266000, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
24
|
Yu Z, Zhang T, Hao R, Zhu Y. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1011-1020. [PMID: 31120077 DOI: 10.1039/c9em00013e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a common hazardous pollutant to aquatic environments and it easily accumulates in living organisms. The roles of phototactic behavior in Cd tolerance in motile organisms are poorly explored. In this study, two Chlamydomonas reinhardtii strains, a wild type with positive phototaxis (CC125) and a negatively phototactic mutant (agg1), were used to assess the effects of phototaxis on Cd-induced toxicity to algae. Exposure to Cd inhibited the cell growth and photosynthetic activities, reduced the photosynthetic pigment content, and enhanced the intracellular oxidative stress of algae. Well buffered by EDTA in algae medium, the concentrations of Cd causing 50% growth inhibition (EC50) of CC125 and agg1 for 72 h of exposure were 55.96 and 77.20 μM L-1, respectively. Photosystem II activities in CC125 were more sensitive to Cd than agg1 at 60 μM L-1 Cd. In addition, agg1 accumulated less intracellular Cd than CC125. The changes of extracellular polymeric substances and intracellular response to Cd stress might be related to the different tolerances of the two algae to Cd. Taken together, phototaxis was demonstrated to be associated with Cd-induced toxicity to C. reinhardtii.
Collapse
Affiliation(s)
- Zhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | | | | | | |
Collapse
|
25
|
Peng H, Li D, Ye J, Xu H, Xie W, Zhang Y, Wu M, Xu L, Liang Y, Liu W. Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:224-230. [PMID: 30682675 DOI: 10.1016/j.jenvman.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
To study the biosorption behaviors of bacteria on heavy metal chelators, the biosorption kinetics, biosorption thermodynamics and pH influence tests of the Ochrobactrum MT180101 on ionic and chelate copper were investigated. Furthermore, the biosorption mechanisms of the Ochrobactrum MT180101 on ionic copper and chelate copper were explained by means of an excitation emission matrix as well as infrared and X-ray photoelectron spectroscopy. The results indicated the following. 1) The biosorption on chelate copper was needed to destroy the complexation group first through metabolic and secretory activities. 2) The biosorption mechanism of the Ochrobactrum MT180101 on copper involved surface biosorption, extracellular chelation and bienzyme-mediated biotransformation. The results suggested that Ochrobactrum had a superior biosorption efficiency to ionic and chelate copper.
Collapse
Affiliation(s)
- Huanlong Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Da Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Jian Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Haixing Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Wenjia Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Yuguang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Foshan Water Group Co., Ltd., Foshan, 528000, PR China
| | - Meirou Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Liang Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Yongmei Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
26
|
Liu H, Lian B. Quantitative evaluation of different fractions of extracellular polymeric substances derived from Paenibacillus mucilaginosus against the toxicity of gold ions. Colloids Surf B Biointerfaces 2019; 175:195-201. [DOI: 10.1016/j.colsurfb.2018.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023]
|
27
|
Zhang P, Zhu J, Xu XY, Qing TP, Dai YZ, Feng B. Identification and function of extracellular protein in wastewater treatment using proteomic approaches: A minireview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:24-29. [PMID: 30553123 DOI: 10.1016/j.jenvman.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/04/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Microbial extracellular proteins serve as important functions in wastewater treatment process. Analysis of their compositions and properties is crucial to probe their specific functions. However, conventional analytical techniques cannot obtain interest protein information from complex proteins. Recently, the extracellular proteomics method has been applied to resolve the composition of extracellular proteins. In order to better understand the roles of extracellular protein in wastewater treatment process, this review provides the information on the proteomics methods and their application in investigating extracellular proteins involved in microbial attachment/aggregation, biodegradation of pollutants, and response to environmental stresses. Future work needs to exploit the full capability of the proteome.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
28
|
Peng H, Xie W, Li D, Wu M, Zhang Y, Xu H, Ye J, Ye T, Xu L, Liang Y, Liu W. Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:17-26. [PMID: 30384163 DOI: 10.1016/j.ecoenv.2018.10.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
It is necessary to study the mechanism of resistance to heavy metals in microbiological processes. In this study, Ochrobactrum MT180101 was used as the microbial source of an membrane bioreactor to investigate its degradation efficiency for electroplating wastewater and the copper-resistant mechanism. Meanwhile, excitation emission matrix-parallel factor, scanning electron microscope, atomic force microscope, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and proteome analyses were applied to explain the comprehensive mechanism of the Ochrobactrum MT180101 resisting heavy metal toxicity. The results indicated that the Ochrobactrum MT180101 resisted heavy metal toxicity with the following pathways: i) binding metal cations on cell wall surfaces, ii) generating microbial products such as protein to chelate and stabilize the metal cations, iii) bio-transporting heavy metals from the intramembrane to the outer membrane by means of intracellular transport, and iv) reducing heavy metals through enzyme-mediated biotransformation. The results ensure that Ochrobactrum MT180101 was a copper-resistant bacterium that can be used in the pretreatment or deep treatment of electroplating wastewater.
Collapse
Affiliation(s)
- Huanlong Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Wenjia Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Da Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Meirou Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yuguang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Foshan Water Group Co., Ltd., Foshan 528000, PR China
| | - Haixing Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Jian Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Tingjin Ye
- Foshan Water Group Co., Ltd., Foshan 528000, PR China
| | - Liang Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yongmei Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO 2 Based on Surface Plasmon Resonance and Waveguide. Appl Environ Microbiol 2018; 84:AEM.00047-18. [PMID: 29500260 DOI: 10.1128/aem.00047-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 01/01/2023] Open
Abstract
Pollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO2 (n-TiO2) on the average thicknesses of Bacillus subtilis biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO2 to the cell surface was also probed. The results revealed that n-TiO2 caused biofilm dispersal and the thicknesses decreased by 2.0 to 2.6 μm after several hours of exposure. The attachment abilities of bacteria with extracellular polymeric substances (EPS) on hydrophilic surfaces were significantly reduced by 31% and 81% under 10 and 100 mg/liter of n-TiO2, respectively, whereas those of bacteria without EPS were significantly reduced by 43% and 87%, respectively. The attachment abilities of bacteria with and without EPS on hydrophobic surfaces were significantly reduced by 50% and 56%, respectively, under 100 mg/liter of n-TiO2 The results demonstrated that biofilm dispersal can be attributed to the changes in the cell surface structure and the reduction of microbial attachment ability.IMPORTANCE Nanoparticles can penetrate into the outer layer of biofilm in a relatively short period and can bind onto EPS and bacterial surfaces. The current work probed the effects of nanosized TiO2 (n-TiO2) on biofilm thickness, bacterial migration, and surface properties of the cell in the early stage using the surface plasmon resonance waveguide mode. The results demonstrated that n-TiO2 decreased the adhesive ability of both cell and EPS and induced bacterial migration and biofilm detachment in several hours. The decreased adhesive ability of microbes and EPS worked against microbial aggregation, reducing the effluent quality in the biological wastewater treatment process.
Collapse
|