1
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
2
|
Würfel H, Pfeifer A, Heinze T. Efficient heterogeneous synthesis of nucleophilic carboxymethyl hydrazides of polysaccharides. Biopolymers 2024; 115:e23574. [PMID: 38469937 DOI: 10.1002/bip.23574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Nucleophilic moieties in polysaccharides (PS) with distinct higher reactivity compared with the hydroxy group are interesting for sustainable applications in chemistry, medicine, and pharmacy. An efficient heterogeneous method for the formation of such nucleophilic PS is described. Employing alcohols as slurry medium, protonated carboxymethyl (CM) PS and hydrazine hydrate are allowed to react at elevated temperatures. The CM derivatives of starch and pullulan can be transformed almost quantitatively to the corresponding hydrazides. The reaction is less efficient for CM dextrans and CM xylans. As slurry media, 2-propanol and ethanol were probed, and the results are compared with a homogeneous procedure performed in water. Overall, the heterogeneous procedure is superior compared with the homogeneous route. 2-Propanol is the best slurry medium investigated yielding PS hydrazides with the highest nitrogen content.
Collapse
Affiliation(s)
- Hendryk Würfel
- Center of Excellence for Polysaccharide Research, Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Annett Pfeifer
- Center of Excellence for Polysaccharide Research, Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Geitel K, Würfel H, Günther W, Heinze T. Synthesis and characterization of nucleophilic polysaccharide carbazates. Carbohydr Polym 2024; 329:121727. [PMID: 38286527 DOI: 10.1016/j.carbpol.2023.121727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
A simple synthesis of amino polysaccharides (PS) could be developed. Phenyl carbonates (PC) of xylan, dextran, and cellulose were easily transferred into PS carbazates by conversion with hydrazine hydrate. The degree of substitution could be adjusted by varying the molar ratio of hydrazine to PS repeating unit, enabling the preparation of both pure PS carbazates and derivatives with bifunctional reactivity containing the reactive PC and the amino group of the carbazate moiety. Further functionalization of the derivatives is feasible with carbonyl compounds like aldehydes at the carbazate groups. The reactivity of carbazate groups is shown by the reaction with 4-fluorobenzaldehyde, resulting in the formation of Schiff base conjugates.
Collapse
Affiliation(s)
- Katja Geitel
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Hendryk Würfel
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Wolfgang Günther
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Thomas Heinze
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany.
| |
Collapse
|
4
|
Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym 2023; 312:120797. [PMID: 37059536 DOI: 10.1016/j.carbpol.2023.120797] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.
Collapse
|
5
|
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023; 28:molecules28031086. [PMID: 36770753 PMCID: PMC9920038 DOI: 10.3390/molecules28031086] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS' biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives.
Collapse
|
6
|
AIE-Featured Redox-Sensitive Micelles for Bioimaging and Efficient Anticancer Drug Delivery. Int J Mol Sci 2022; 23:ijms231810801. [PMID: 36142713 PMCID: PMC9505945 DOI: 10.3390/ijms231810801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
In the present study, an amphiphilic polymer was prepared by conjugating methoxy poly(ethylene glycol) (mPEG) with tetraphenylethene (TPE) via disulfide bonds (Bi(mPEG-S-S)-TPE). The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs such as paclitaxel (PTX) in the core. Combining the effect of TPE, mPEG, and disulfide bonds, the Bi(mPEG-S-S)-TPE micelles exhibited excellent AIE feature, reduced protein adsorption, and redox-sensitive drug release behavior. An in vitro intracellular uptake study demonstrated the great imaging ability and efficient internalization of Bi(mPEG-S-S)-TPE micelles. The excellent anticancer effect and low systemic toxicity were further evidenced by the in vivo anticancer experiment. The Bi(mPEG-S-S)-TPE micelles were promising drug carriers for chemotherapy and bioimaging.
Collapse
|
7
|
Jin R, Yang Z, Sun J, Chang Q, Cai L, Lin C. Self‐assembled
nanoprodrugs from reducible
dextran‐diethyldithiocarbamate
conjugates for robust
tumor‐targeted
chemotherapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.53043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rong Jin
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai People's Republic of China
| | - Zhengshi Yang
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai People's Republic of China
| | - Jing Sun
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai People's Republic of China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai People's Republic of China
| | - Li Cai
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai People's Republic of China
| | - Chao Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital Tongji University School of Medicine Shanghai People's Republic of China
| |
Collapse
|
8
|
Theodosis-Nobelos P, Charalambous D, Triantis C, Rikkou-Kalourkoti M. Drug Conjugates Using Different Dynamic Covalent Bonds and their Application in Cancer Therapy. Curr Drug Deliv 2021; 17:542-557. [PMID: 32384029 DOI: 10.2174/1567201817999200508092141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Polymer-drug conjugates are polymers with drug molecules chemically attached to polymer side chains through either a weak (degradable bond) or a dynamic covalent bond. These systems are known as pro-drugs in the inactive form when passing into the blood circulation system. When the prodrug reaches the target organ, tissue or cell, the drug is activated by cleavage of the bond between the drug and polymer, under certain conditions existing in the target organ. The advantages of polymer-drug conjugates compared to other controlled-release carriers and conventional pharmaceutical formulations are the increased drug loading capacity, prolonged in vivo; circulation time, enhanced intercellular uptake, better-controlled release, improved therapeutic efficacy, and enhanced permeability and retention effect. The aim of the present review is the investigation of polymer-drug conjugates bearing anti-cancer drugs. The polymer, through its side chains, is linked to the anti-cancer drugs via; dynamic covalent bonds, such as hydrazone/imine bonds, disulfide bonds, and boronate esters. These dynamic covalent bonds are cleaved in conditions existing only in cancer cells and not in healthy ones. Thus, ensuring the selective release of drug to the targeted tissue, reducing in this way, the frequent side effects of chemotherapy, leading to a more targeted application, despite the nature of the applied polymer, possessing the ability to aim tumors selectively via; incorporation of a relative ligand.
Collapse
Affiliation(s)
| | - Despina Charalambous
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | - Charalampos Triantis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, Cyprus
| | | |
Collapse
|
9
|
Hu Q, Lu Y, Luo Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr Polym 2021; 264:117999. [DOI: 10.1016/j.carbpol.2021.117999] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
|
10
|
Li H, Luo Z, Peng M, Guo L, Li F, Feng W, Cui Y. Doxorubicin Loaded Dextran-coated Superparamagnetic Iron Oxide Nanoparticles with Sustained Release Property: Intracellular Uptake, Pharmacokinetics, and Biodistribution Study. Curr Pharm Biotechnol 2021; 23:978-987. [PMID: 34097591 DOI: 10.2174/1389201022666210604153738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the short biological half-life and serious side effects (especially for heart and kidney), the application of Doxorubicin (Dox) in clinical therapy is strictly limited. To overcome these shortcomings, a novel sustained release formulation of doxorubicin-loaded dextran-coated superparamagnetic iron oxide nanoparticles (Dox-DSPIONs) was prepared. OBJECTIVE The purpose of this study was to evaluate the intracellular uptake behavior of Dox-DSPIONs and to investigate their pharmacokinetics and biodistribution properties. METHOD Confocal laser scanning microscopy was employed to study the intracellular uptake and release properties of Dox from Dox-DSPIONs in SMMC-7721 cells. Simple high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was established to study the pharmacokinetics and biodistribution properties of Dox-DSPIONs in vivo after intravenous administration and compared with free Dox. RESULTS Intracellular uptake experiment indicated that Dox could be released sustainedly from Dox-DSPIONs over time. The pharmacokinetics parameters displayed that the T1/2and AUC0-24h of Dox-DSPIONs were higher than those of free Dox, while the Cmax of Dox-DSPIONs was significantly lower than that of free drug. The biodistribution behaviors of the drug were altered by Dox-DSPIONs in mice, which showed obvious liver targeting, and significantly reduced the distribution of the drug in the heart and kidney. CONCLUSION Dox-DSPIONs have the sustained-release property in vitro and in vivo, which could significantly prolong blood circulation time, improve bioavailability, and reduce the side effects of Dox. Therefore, the novel formulation of the Dox-DSPIONs has the potential as a promising drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Houli Li
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Zhiyi Luo
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Mingli Peng
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Lili Guo
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Fuqiang Li
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yali Cui
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Jin R, Sun J, Zhou L, Guo X, Cao A. Dual-responsive click-crosslinked micelles designed for enhanced chemotherapy for solid tumors. Biomater Sci 2021; 8:2507-2513. [PMID: 32211707 DOI: 10.1039/d0bm00078g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of multiple stimuli-responsive, stable polymeric drug carriers is key for efficient drug release against solid tumors. Herein, core-crosslinked micelles were readily prepared from a pair of redox/pH-sensitive clickable copolymers. The two copolymers comprised the same poly(ethylene glycol) (PEG)-poly(ε-benzyloxycarbonyl-l-lysine) (PZLL) block but with either disulfide-linked azadibenzocyclooctyne (DBCO) or azide (AZ) group-tagged branched polyethylenimine (BPEI, 1.8 kDa). The data showed that an equivalent of the two copolymers could self-assemble into nanosized micelles with the crosslinked core via the DBCO-AZ click chemistry. The click-crosslinked micelles showed excellent size stability under multiple dilutions but destabilization in an acidic or reductive environment. Besides, they could load doxorubicin (DOX), an anticancer drug, and mediate slow drug release in a neutral environment but sufficient drug unloading under acidic plus reductive conditions. In vitro, DOX-loaded crosslinked micelles led to higher DOX accumulation in the cellular nucleus in comparison with non-crosslinked micelles from the PEG-PZLL-BPEI copolymer (PP), thus causing more marked cytotoxicity in SKOV-3 cells. In vivo, DOX-loaded crosslinked micelles caused significant growth inhibition of SKOV-3 tumors xenografted in BALB/c nude mice, and showed superior anticancer efficacy to non-crosslinked PP micelles. Chemotherapy with core-crosslinked micelles had no adverse side effects on the health (serum levels and body weight) of the mice. This study highlights the design of clickable block copolymers to easily construct core-crosslinked and multiple stimuli-responsive micelles for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Rong Jin
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liefu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xuelian Guo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
12
|
Wong KH, Lu A, Chen X, Yang Z. Natural Ingredient-Based Polymeric Nanoparticles for Cancer Treatment. Molecules 2020; 25:E3620. [PMID: 32784890 PMCID: PMC7463484 DOI: 10.3390/molecules25163620] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a global health challenge. There are drawbacks to conventional chemotherapy such as poor bioavailability, development of drug resistance and severe side effects. Novel drug delivery system may be an alternative to optimize therapeutic effects. When such systems consist of natural materials, they offer important advantages: they are usually highly biocompatible, biodegradable, nontoxic and nonimmunogenic. Furthermore, natural materials can be easily modified for conjugation with a wide range of therapeutic agents and targeting ligands, according to the therapeutic purpose. This article reviews different natural ingredients and their applications in drug delivery systems for cancer therapy. Firstly, an overview of the polysaccharides and protein-based polymers that have been extensively investigated for drug delivery are described. Secondly, recent advances in using various natural ingredient-based polymeric nanoparticles for cancer therapy are reviewed. The characteristics of these delivery systems are summarized, followed by a discussion of future development and clinical potential. This review aims to summarize current knowledge and provide a basis for developing effective tailor-made formulations for cancer therapy in the future.
Collapse
Affiliation(s)
- Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (K.H.W.); (A.L.); (X.C.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
13
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
14
|
Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids Surf B Biointerfaces 2020; 185:110537. [DOI: 10.1016/j.colsurfb.2019.110537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022]
|
15
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
16
|
Wintgens V, Guigner JM, Miskolczy Z, Amiel C, Biczók L. 4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation. Carbohydr Polym 2019; 223:115071. [DOI: 10.1016/j.carbpol.2019.115071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/06/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
|
17
|
Liu R, Zhang J, Zhang D, Wang K, Luan Y. Self-assembling nanoparticles based on cytarabine prodrug for enhanced leukemia treatment. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|