1
|
Zhang X, Han J, Ding T, Cao J, Zan X, Guo Y, Bao H. Shape Effect of Polymer-Based Multilayer Microcapsules on Cellular Internalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26640-26650. [PMID: 39627004 DOI: 10.1021/acs.langmuir.4c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The intracellular fate of drug carriers had received extensive attention, which was profoundly influenced by the shapes of carriers. However, it has not been fully addressed due to the lack of effective strategies to prepare carriers with different shapes and the interference of other parameters (such as stiffness and chemistry of the shaped particle and the different cell lines). In this work, polymer-based microcapsules with different shapes (spherical, peanut, dumbbell, and cubic) but the same surface chemistry were engineered through the alternative deposition of polyethylenimine (PEI) and polyethylene glycol (PEG) onto the sacrificial CaCO3 templates with different well-defined shapes. Various techniques (SEM, CLSM, AFM, FTIR, and XPS) were utilized to determine the shapes and chemical composition of these microcapsules. The effect of microcapsule shape on cellular internalization kinetics and the endocytosis mechanism was thoroughly studied, and dumbbell and cubic microcapsules showed greater internalization rates and amounts than spherical and peanut microcapsules. These microcapsules were internalized through micropinocytosis, and the shapes had no obvious effect on the endocytosis mechanism. This work provides a wealth of information about the relationship between the shape of microcapsules and their performance in cellular internalization, which will be of great help in the development of related drug carriers.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
- Joint Research Centre on Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jianmei Han
- Joint Research Centre on Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ting Ding
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jianye Cao
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Xingjie Zan
- Joint Research Centre on Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yan Guo
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hongdan Bao
- Joint Research Centre on Medicine, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
2
|
Ismail N, Shakoor RA, Al-Qahtani N, Kahraman R. Multilayered LDH/Microcapsule Smart Epoxy Coating for Corrosion Protection. ACS OMEGA 2023; 8:30838-30849. [PMID: 37663514 PMCID: PMC10468836 DOI: 10.1021/acsomega.2c06406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/20/2023] [Indexed: 09/05/2023]
Abstract
A multilayered smart epoxy coating for corrosion prevention of carbon steel was developed and characterized. Toward this direction, as a first step, zinc-aluminum nitrate-layered double hydroxide (Zn/Al LDH) was synthesized using the hydrothermal crystallization technique and then loaded with dodecylamine (DOD), which was used as an inhibitor (pH-sensitive). Similarly, the synthesis of the urea-formaldehyde microcapsules (UFMCs) has been carried out using the in-situ polymerization method, and then the microcapsules (LAUFCs) were encapsulated with linalyl acetate (LA) as a self-healing agent. Finally, the loaded Zn/Al LDH (3 wt %) and modified LAUFCs (5 wt %) were reinforced into an epoxy matrix to develop a double-layer coating (DL-EP). For an exact comparison, pre-layer epoxy coatings comprising 3 wt % of the loaded Zn/Al LDH (referred to as LDH-EP), top-layer epoxy coatings comprising 5 wt % linalyl acetate urea-formaldehyde microcapsules (referred to as UFMLA COAT), and a blank epoxy coating (reference coating) were also developed. The developed epoxy coatings were characterized using various techniques such as XRD, XPS, BET, TGA, FTIR, EIS, etc. Electrochemical tests performed on the synthesized coatings indicate that the DL-EP demonstrates improved self-healing properties compared to LDH-EP and UFMLA COAT.
Collapse
Affiliation(s)
- Norhan
Ashraf Ismail
- Center
for Advanced Materials, Qatar University, Doha 2713, Qatar
- Department
of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - R. A. Shakoor
- Center
for Advanced Materials, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Noora Al-Qahtani
- Center
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Ramazan Kahraman
- Department
of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Hu B, Yang Y, Han L, Yang J, Zheng W, Cao J. Characterization of hydrophilic and hydrophobic core-shell microcapsules prepared using a range of antisolvent approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
5
|
Universal Microcarriers Based on Natural and Synthetic Polymers for Co-Delivery of Hydrophilic and Hydrophobic Compounds. Polymers (Basel) 2022; 14:polym14050931. [PMID: 35267753 PMCID: PMC8912594 DOI: 10.3390/polym14050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Several variants of hybrid polyelectrolyte microcapsules (hPEMC) were designed and produced by modifying in situ gelation methods and layer-by-layer (LbL) techniques. All of the hPEMC designs tested in the study demonstrated high efficiency of the model hydrophilic compound loading into the carrier cavity. In addition, the microcarriers were characterized by high efficiency of incorporating the model hydrophobic compound rhodamine B isothiocyanate (RBITC) into the hydrophobic layer consisting of poly-(d,l)-lactide-co-glycolide (PLGA), oligo-(l)-lactide (OLL), oligo-(d)-lactide (OLD) and chitosan/gelatin/poly-l-lactide copolymer (CGP). The obtained microcapsules exhibited high storage stability regardless of the composition and thickness of the polyelectrolyte shell. Study of the impact of hybrid polyelectrolyte microcapsules on viability of the adhesive L929 and suspension HL-60 cell lines revealed no apparent toxic effects of hPEMC of different architecture on live cells. Interaction of hPEMC with peritoneal macrophages for the course of 48 h resulted in partial deformation and degradation of microcapsules accompanied by release of the content of their hydrophilic (BSA–fluorescein isothiocyanate conjugate (BSA-FITC)) and hydrophobic (RBITC) layer. Our results demonstrate the functional efficiency of novel hybrid microcarriers and their potential for joint delivery of drugs with different physico-chemical properties in complex therapy.
Collapse
|
6
|
Abstract
Environmentally friendly alternatives have become sought after upon the development of scientific research and industrial processes. Recent trends suggest biodegradable polymers as the most promising solution for synthetic microcapsule systems. Safety, efficiency, biocompatibility, and biodegradability are some of the properties that biodegradable systems in microencapsulation can provide for a broad spectrum of applications. The controlled release of encapsulated active agents is a research field that, over the years, has been constantly innovating due to the promising applications in the areas of pharmaceutical, cosmetic, textile industry, among others. This article presents an overview of different polymers with potential for microcapsule synthesis, namely, biodegradable polymers. First, natural polymers are discussed, which are divided into two categories: polysaccharide-based polymers (cellulose, starch, chitosan, and alginate) and protein polymers (gelatin). Second, synthetic polymers are described, where biodegradable polymers such as polyesters, polyamides, among others appear as examples. For each polymer, this review presents its origin, relevant properties, applications, and examples found in the literature regarding its use in biodegradable microencapsulation systems.
Collapse
|
7
|
Zhang YF, Liu JZ, Li J, Wang CY, Ren Q. Synthesis and storage stability investigation on curing agent microcapsules of imidazole derivatives with aqueous polyurethane as the shell. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang X, Hu B, Zhao Y, Yang Y, Gao Z, Nishinari K, Yang J, Zhang Y, Fang Y. Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10424-10432. [PMID: 34427433 DOI: 10.1021/acs.langmuir.1c01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Core-shell microcapsules with combined features of hydrophilicity and hydrophobicity have become much popular. However, the assembly of biocompatible and edible materials in hydrophilic-hydrophobic core-shell microcapsules is not easy. In this work, based on electrostatic interactions, we prepared controllable calcium alginate (ALG)-zein core-shell particles of different shapes and sizes using hydrophilic ALG and hydrophobic zein by a two-step extrusion method. Negatively charged hydrogel beads of spherical, ellipsoidal, or fibrous shape were added into a positively charged zein solution (dissolved in 70% (v/v) aqueous ethanol solution) to achieve different-shaped core-shell particles. Interestingly, the size, shape, and shell thickness of the particles can be regulated by the needle diameter, stirring speed, and zein concentration. Moreover, for simplification, the core-shell particles were also synthesized by a one-step extrusion method, in which an ALG solution was added dropwise into a 70% (v/v) aqueous ethanol solution containing zein and CaCl2. The particles synthesized in this work showed controlled digestion of encapsulated medium-chain triglyceride (MCT) and sustained release of encapsulated thiamine and ethyl maltol. Our preparation method is simplistic and can be extended to fabricate a variety of hydrophilic and hydrophobic core-shell structures to encapsulate a broad spectrum of materials.
Collapse
Affiliation(s)
- Xun Zhang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yisu Yang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiming Gao
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Katsuyoshi Nishinari
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Healing Efficiency of CNTs-Modified-UF Microcapsules That Provide Higher Electrical Conductivity and EMI Shielding Properties. Polymers (Basel) 2021; 13:polym13162753. [PMID: 34451294 PMCID: PMC8400653 DOI: 10.3390/polym13162753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
In this study, the effect of the addition of multi-walled carbon nanotubes (MWCNTs), at three percentages, into the urea-formaldehyde (UF) shell-wall of microcapsules on the healing efficiency is reported. The modified shell-wall created a conductive network in semi-conductive epoxies, which led to an improvement of the electromagnetic interference shielding effectiveness (EMI SE); utilizing the excellent electrical properties of the CNTs. The microcapsule’s mean diameter and shell wall were examined via scanning electron microscopy (SEM). Thermal stability was evaluated via thermogravimetric analysis (TGA). The healing efficiency was assessed in terms of fracture toughness, while the electrical properties were measured using impedance spectroscopy. The measurements of the EMI SE were carried out in the frequency range of 7–9 GHz. The derived results indicated that the incorporation of the CNTs resulted in a decrease in the mean size of the microcapsules, while the thermal stability remained unchanged. In particular, the introduction of 0.5% w/v CNTs did not affect the healing efficiency, while it increased the initial mechanical properties of the epoxy after the incorporation of the self-healing system by 27%. At the same time, it led to the formation of a conductive network, providing electrical conductivity to the epoxies. The experimental results showed that the SE increased on average 5 dB or more after introducing conductive microcapsules.
Collapse
|
10
|
Self-Healing Performance of Smart Polymeric Coatings Modified with Tung Oil and Linalyl Acetate. Polymers (Basel) 2021; 13:polym13101609. [PMID: 34067528 PMCID: PMC8157197 DOI: 10.3390/polym13101609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the synthesis and characterization of polymeric smart self-healing coatings. A comparison of structural, thermal, and self-healing properties of two different polymeric coatings comprising distinct self-healing agents (tung oil and linalyl acetate) is studied to elucidate the role of self-healing agents in corrosion protection. Towards this direction, urea-formaldehyde microcapsules (UFMCs) loaded with tung oil (TMMCs) and linalyl acetate (LMMCs) were synthesized using the in-situ polymerization method. The synthesis of both LMMCs and TMMCs under identical experimental conditions (900 rpm, 55 °C) has resulted in a similar average particle size range (63-125 µm). The polymeric smart self-healing coatings were developed by reinforcing a polymeric matrix separately with a fixed amount of LMMCs (3 wt.% and 5 wt.%), and TMMCs (3 wt.% and 5 wt.%) referred to as LMCOATs and TMCOATs, respectively. The development of smart coatings (LMCOATs and TMCOATs) contributes to achieving decent thermal stability up to 450 °C. Electrochemical impedance spectroscopy (EIS) analysis indicates that the corrosion resistance of smart coatings increases with increasing concentration of the microcapsules (TMMCs, LMMCs) in the epoxy matrix reaching ~1 GΩ. As a comparison, LMCOATs containing 5 wt.% LMMCs demonstrate the best stability in the barrier properties than other developed coatings and can be considered for many potential applications.
Collapse
|
11
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
12
|
Liu X, Pan X, Debije MG, Heuts JPA, Mulder DJ, Schenning APHJ. Programmable liquid crystal elastomer microactuators prepared via thiol-ene dispersion polymerization. SOFT MATTER 2020; 16:4908-4911. [PMID: 32452499 DOI: 10.1039/d0sm00817f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Narrowly dispersed, 10 micron-sized, liquid crystalline elastomer polymer actuators were first prepared via thiol-ene dispersion polymerization and then embedded and stretched in a polyvinyl alcohol film, followed by photopolymerization of the residual acrylate groups. Prolate micro spheroids in which the mesogens are aligned parallel to the long axis were obtained and showed reversible thermally driven actuation owing to nematic to isotropic transition of the liquid crystal molecules. The particles were also compressed to form disk-shaped oblate microactuators in which the mesogens are aligned perpendicular to the short axis, demonstrating that the reported method is a versatile method to fabricate liquid crystal elastomer microactuators with programmable properties.
Collapse
Affiliation(s)
- Xiaohong Liu
- Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|