1
|
Li S, Hong J, Xia X, Duan L, Yang W, Xiong J, Yin X, Hong Y. A rapid near-infrared turn on fluorescence probe for the detection of sulfite in food and its application in biological imaging. Talanta 2024; 278:126445. [PMID: 38908139 DOI: 10.1016/j.talanta.2024.126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
A near-infrared fluorescent "turn on" probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A-π-A to a D-π-A framework towards SO32-. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5-10 μM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.
Collapse
Affiliation(s)
- Shufei Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiaxin Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xinyu Xia
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Luying Duan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wuying Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianhua Xiong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoli Yin
- Liarbry of Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanping Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
Fu D, Xie W, Liu B, Wen H. Old drug, new use: The thalidomide-based fluorescent probe for cysteine detection and imaging in living cells. Bioorg Chem 2024; 149:107490. [PMID: 38810484 DOI: 10.1016/j.bioorg.2024.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Thalidomide, as a high-profile cereblon (CRBN) ligand, has attracted much attention because of its ability to target protein degradation. In this study, we are committed to developing a new fluorescent probe THD-1 based on thalidomide, aiming at improving the performance of cysteine fluorescent probe in optical properties and biocompatibility. The experimental results showed that THD-1, as a cysteine fluorescent probe, owned the characteristics of obvious colorimetric change, fast response time, good selectivity and high sensitivity. The mechanism of THD-1 sensing cysteine was further verified to ensure its reliability and effectiveness. It was also worth mentioning that THD-1 was successfully applied to the biological imaging of cysteine in living A549 cells, which highlighted its value in practical application. Overall, thalidomide, as a clinically approved drug, not only enriches the fluorescent skeleton library, but also paves a new way for the further development of fluorescent probes.
Collapse
Affiliation(s)
- Dingqiang Fu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Wengjun Xie
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bo Liu
- School of Chemistry and Environmental Engineering, Hubei Minzu Univrsity, Enshi 445000, Hubei, China; Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, Hubei, China.
| | - Hao Wen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Liao X, Wu B, Li H, Zhang M, Cai M, Lang B, Wu Z, Wang F, Sun J, Zhou P, Chen H, Di D, Ren C, Zhang H. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots. Anal Chem 2023; 95:14573-14581. [PMID: 37729469 DOI: 10.1021/acs.analchem.3c01854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Discrimination and quantification of amino acid (AA) enantiomers are particularly important for diagnosing and treating diseases. Recently, dual-mode probes have gained a lot of research interest because they can catch more detecting information compared with the single-mode probes. Thus, it is of great significance to develop a dual-mode sensor realizing AA enantiomer discrimination conveniently and efficiently. In this work, carbon dot L-TCDs were prepared by N-methyl-1,2-benzenediamine dihydrochloride (OTD) and l-tryptophan. With the assistance of H2O2, L-TCDs show an excellent discrimination performance for enantiomers of glutamine (Gln) and valine (Val) in both fluorescent and colorimetric modes. The fluorescence enantioselectivity of Gln (FD/FL) and Val (FL/FD) is 5.29 and 4.13, respectively, and the colorimetric enantioselectivity of Gln (ID/IL) and Val (IL/ID) is 13.26 and 3.42, individually. The chiral recognition mechanism of L-TCDs was systematically studied. L-TCDs can be etched by H2O2, and the participation of AA enantiomers results in different amounts of the released OTD, which provides fluorescent and colorimetric signals for identifying and quantifying the enantiomers of Gln and Val. This work provides a more convenient and flexible dual-mode sensing strategy for discriminating AA enantiomers, which is expected to be of great value in facile and high-throughput chiral recognition.
Collapse
Affiliation(s)
- Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bingyan Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mengtao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Muzi Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangling Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Huang N, Yang D, Chen H, Xiao Y, Wen J, Long Y, Zheng H. Colorimetric detection of biothiols and Hg 2+ based on the peroxidase-like activity of GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122263. [PMID: 36571862 DOI: 10.1016/j.saa.2022.122263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Guanosine-5'-triphosphate (GTP) not only plays a key role in a majority of cellular processes but also be proposed as a peroxidase-like mimic. Compared with nanozymes, GTP shows good tolerance under harsh conditions, which can be used to construct an easy colorimetric analysis for the detection of biomolecules. Here, on the basis of the peroxidase-like activity of GTP which can catalyze the oxidation of 3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB), colorimetric sensing was established for biothiols and Hg2+. Biothiols reduced the oxTMB back to colorless TMB, and Hg2+ restored the formation of oxTMB, leading to the recovery of color. This method not only provides a platform for the detection of metal ions and biothiols, but also shows that GTP has great potential for analytical detection.
Collapse
Affiliation(s)
- Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Dan Yang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huanhuan Chen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
5
|
Synthesis of carbon-based Ag-Pd bimetallic nanocomposite and the application in electroless copper deposition. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Shi J, Zhang D, Li M, Wang Y, Liu L, Wang T, Guo F, Wu X. A new fluorescent probe for hydrogen sulfide based on naphthalimide derivatives and its biological application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Escalona-Villalpando RA, Viveros-Palma K, Espinosa-Lagunes FI, Rodríguez-Morales JA, Arriaga LG, Macazo FC, Minteer SD, Ledesma-García J. Comparative Colorimetric Sensor Based on Bi-Phase γ-/α-Fe 2O 3 and γ-/α-Fe 2O 3/ZnO Nanoparticles for Lactate Detection. BIOSENSORS 2022; 12:1025. [PMID: 36421143 PMCID: PMC9688618 DOI: 10.3390/bios12111025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This work reports on Fe2O3 and ZnO materials for lactate quantification. In the synthesis, the bi-phase γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO nanoparticles (NPs) were obtained for their application in a lactate colorimetric sensor. The crystalline phases of the NPs were analyzed by XRD and XPS techniques. S/TEM images showed spheres with an 18 nm average and a needle length from 125 to 330 nm and 18 nm in diameter. The γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO were used to evaluate the catalytic activity of peroxidase with the substrate 3,3,5,5-tetramethylbenzidine (TMB), obtaining a linear range of 50 to 1000 μM for both NPs, and a 4.3 μM and 9.4 μM limit of detection (LOD), respectively. Moreover, γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO/lactate oxidase with TMB assays in the presence of lactate showed a linear range of 50 to 1000 µM, and both NPs proved to be highly selective in the presence of interferents. Finally, a sample of human serum was also tested, and the results were compared with a commercial lactometer. The use of ZnO with Fe2O3 achieved a greater response toward lactate oxidation reaction, and has implementation in a lactate colorimetric sensor using materials that are economically accessible and easy to synthesize.
Collapse
Affiliation(s)
- Ricardo A. Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Karen Viveros-Palma
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | | | - José A. Rodríguez-Morales
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Luis G. Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Mexico
| | - Florika C. Macazo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Janet Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| |
Collapse
|
8
|
Morphology transition of Ag nanoprisms as a platform to design a dual sensor for NADH sensitive assay. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Khlebtsov BN, Burov AM, Zakharevich AM, Khlebtsov NG. SERS and Indicator Paper Sensing of Hydrogen Peroxide Using Au@Ag Nanorods. SENSORS (BASEL, SWITZERLAND) 2022; 22:3202. [PMID: 35590891 PMCID: PMC9101113 DOI: 10.3390/s22093202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The detection of hydrogen peroxide and the control of its concentration are important tasks in the biological and chemical sciences. In this paper, we developed a simple and quantitative method for the non-enzymatic detection of H2O2 based on the selective etching of Au@Ag nanorods with embedded Raman active molecules. The transfer of electrons between silver atoms and hydrogen peroxide enhances the oxidation reaction, and the Ag shell around the Au nanorod gradually dissolves. This leads to a change in the color of the nanoparticle colloid, a shift in LSPR, and a decrease in the SERS response from molecules embedded between the Au core and Ag shell. In our study, we compared the sensitivity of these readouts for nanoparticles with different Ag shell morphology. We found that triangle core-shell nanoparticles exhibited the highest sensitivity, with a detection limit of 10-4 M, and the SERS detection range of 1 × 10-4 to 2 × 10-2 M. In addition, a colorimetric strategy was applied to fabricate a simple indicator paper sensor for fast detection of hydrogen peroxide in liquids. In this case, the concentration of hydrogen peroxide was qualitatively determined by the change in the color of the nanoparticles deposited on the nitrocellulose membrane.
Collapse
Affiliation(s)
- Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.M.B.); (N.G.K.)
| | - Andrey M. Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.M.B.); (N.G.K.)
| | | | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.M.B.); (N.G.K.)
- Department of Physics, Saratov State University, 410012 Saratov, Russia;
| |
Collapse
|
10
|
Singh R, Singh AK, Yadav M, Sharma M, Tiwari I, Upadhyay KK. Naked-eye detection of cysteine/homocysteine through silver nano-resonators and specific identification of homocysteine through nanoresonator–thiosulphate conjugate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01789j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The citrate capped AgNPs synthesized through a modified previous report exhibit naked eye sensing towards cysteine/homocysteine along with SERS characteristics. Their thiosulphate conjugate detects selectively only homocysteine.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Minu Yadav
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi 110054, India
| | - Ida Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - K. K. Upadhyay
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
11
|
Park JH, Yu K, Min J, Chung Y, Yoon JY. A Dual‐Functional Lactate Sensor Based on Silver Nanoparticle‐coated Carbon Dots. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joo Hee Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University Daejeon 34134 Republic of Korea
| | - Kai Yu
- School of Energy and Power Engineering, Jiangsu University Zhenjiang 212013 China
| | - Jin‐Young Min
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| | - Young‐Ho Chung
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University Daejeon 34134 Republic of Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| | - Ji Young Yoon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Cheongju 28119 Republic of Korea
| |
Collapse
|
12
|
Zhang X, Chen S, Zhuo S, Ji Y, Li R. A carbon dots functionalized paper coupled with AgNPs composites platform: application as a sensor for hydrogen peroxide detection based on surface plasmon-enhanced energy transfer. NEW J CHEM 2021. [DOI: 10.1039/d0nj05721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A paper-based fluorescent sensor (PCD/AgNPs) consisted of CDs functionalized paper and AgNPs was developed for sensing H2O2 in milk samples and cancer cells.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Siqi Chen
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Siqi Zhuo
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Yibing Ji
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Ruijun Li
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
13
|
Ma H, Zhang R, Kang Q, Wang T, Xiao J, Li X, Yu L. A new strategy for the detection and discrimination of sulfhydryl amino acids through liquid crystals sensing platform with Cu(ClO4)2. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
|
15
|
Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Kim J, Hong UG, Choi Y, Hong S. Enhancing the evanescent field in TiO2/Au hybrid thin films creates a highly sensitive room-temperature formaldehyde gas biosensor. Colloids Surf B Biointerfaces 2019; 182:110303. [PMID: 31299539 DOI: 10.1016/j.colsurfb.2019.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jina Kim
- Department of Biotechnology, CHA University, Gyeonggi 13488, Republic of Korea
| | - Ung Gi Hong
- R&D center, SK Gas, Gyeonggi 13493, Republic of Korea
| | - Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Chungbuk, 28644, Republic of Korea.
| | - Surin Hong
- Department of Biotechnology, CHA University, Gyeonggi 13488, Republic of Korea.
| |
Collapse
|
17
|
Pham TBN, Bui TTT, Tran VQ, Dang VQ, Hoang LN, Tran CK. Surface-enhanced Raman scattering (SERS) performance on salbutamol detection of colloidal multi-shaped silver nanoparticles. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens Bioelectron 2019; 126:425-432. [DOI: 10.1016/j.bios.2018.10.067] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022]
|
19
|
Xiang F, Li J, Liu Z. pH-Dependent photoluminescence “switch-on” nanosensors composed of silver nanoparticles and nitrogen and sulphur co-doped carbon dots for discriminative detection of biothiols. Analyst 2019; 144:7057-7063. [DOI: 10.1039/c9an01488h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A nanomaterial surface energy transfer (NSET) system composed of silver nanoparticles (AgNPs) and nitrogen and sulphur co-doped carbon dots (N,S-CDs) was established to discriminate biothiols, featuring the pH-promoted distinct PL “switch-on” response.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Jizhou Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| | - Zhongde Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400716
| |
Collapse
|