1
|
Wasilewska M, Derylo-Marczewska A, Marczewski AW. Equilibrium and Kinetic Studies on Adsorption of Neutral and Ionic Species of Organic Adsorbates from Aqueous Solutions on Activated Carbon. Molecules 2024; 29:3032. [PMID: 38998985 PMCID: PMC11243464 DOI: 10.3390/molecules29133032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This work presents comprehensive studies of the adsorption of neutral and ionic forms of organic adsorbates from aqueous solutions on activated carbon. The influence of pH on the equilibrium and kinetics of the adsorption of methylene blue (MB) and organic acids, benzoic (BA), 2-nitrobenzoic (2-NBA), 3-nitrobenzoic (3-NBA), and 4-nitrobenzoic (4-NBA) acid, was investigated. Experimental adsorption isotherms were analyzed using the generalized Langmuir isotherm equation (R2 = 0.932-0.995). Adsorption rate data were studied using multiple adsorption kinetics equations, of which the multi-exponential equation gave the best fit quality (R2 - 1 = (6.3 × 10-6)-(2.1 × 10-3)). The half-time was also used to represent the effect of pH on adsorption kinetics. Strong dependences of the adsorption efficiency on the solution pH were demonstrated. In the case of organic acid adsorption, the amount and rate of this process increased with a decrease in pH. Moreover, larger adsorbed amounts of methylene blue were recorded in an alkaline environment in a relatively short time. The maximum absorbed amounts were 11.59 mmol/g, 6.57 mmol/g, 9.38 mmol/g, 2.70 mmol/g, and 0.24 mmol/g for BA, 2NBA, 3-NBA, 4-NBA, and MB. The pure activated carbon and the selected samples after adsorption were investigated using thermal analysis and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Anna Derylo-Marczewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | | |
Collapse
|
2
|
Martin V, Francisca Bettencourt A, Santos C, Sousa Gomes P. Reviewing particulate delivery systems loaded with repurposed tetracyclines - From micro to nanoparticles. Int J Pharm 2024; 649:123642. [PMID: 38029863 DOI: 10.1016/j.ijpharm.2023.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibacterial agents recognized for their multifaceted properties, including anti-inflammatory, angiogenic and osteogenic effects. This versatility positions them as suitable candidates for drug repurposing, benefitting from well-characterized safety and pharmacological profiles. In the attempt to explore both their antibacterial and pleiotropic effects locally, innovative therapeutic strategies were set on engineering tetracycline-loaded micro and nanoparticles to tackle a vast number of clinical applications. Moreover, the conjoined drug carrier can function as an active component of the therapeutic approach, reducing off-target effects and accumulation, synergizing to an improvement of the therapeutic efficacy. In this comprehensive review we will critically evaluate recent advances involving the use of tetracyclines loaded onto micro- or nanoparticles, intended for biomedical applications, and discuss emerging approaches and current limitations associated with these drug carriers. Owing to their distinctive physical, chemical, and biological properties, these novel carriers have the potential to become a platform technology in personalized regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal.
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Pedro Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| |
Collapse
|
3
|
One-Pot Synthesis of Pyrite Nanoplates Supported on Chitosan Hydrochar as Fenton Catalysts for Organics Removal from Water. Catalysts 2022. [DOI: 10.3390/catal12080858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Fenton reaction is a powerful method for removing refractory pollutants from water, yet it is restricted by shortcomings such as pH adjustments and generation of iron-containing sludge. In this study, a highly dispersed pyrite nanoplate supported on chitosan hydrochar was prepared through a simple one-pot hydrothermal method. The interactions between chitosan and Fe3+ suppressed the accumulation of FeS2 in the crystal growth period and led to the formation of pyrite nanoplates with many exposed (210) facets. Thus, it showed excellent Fenton-like activity and the removal efficiency of AR 73 reached 99.9% within 60 min. The catalyst could be used in a wide pH range of 3~10. Hydroxyl radicals are the main reactive oxygen species in this catalytic system. The self-reduction of generated Fe(III) species by sulfur via inner electron transfer promoted the Fe(II)/Fe(III) redox cycle, and the presence of graphene facilitated the adsorption of pollutants. This catalyst also showed good reuse performances as well as stability, which has promising prospects for practical use in wastewater treatment.
Collapse
|
4
|
Highly-efficient PVDF adsorptive membrane filtration based on chitosan@CNTs-COOH simultaneous removal of anionic and cationic dyes. Carbohydr Polym 2021; 274:118664. [PMID: 34702483 DOI: 10.1016/j.carbpol.2021.118664] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
An adsorptive membrane filtration based on polyvinylidene fluoride (PVDF) with chitosan (CS) and carboxylated carbon nanotubes (CNTs-COOH) is prepared by method of phase conversion, and the PVDF-CS@CNTs-COOH membranes can effectively separate anionic and cationic dye wastewater. Compared to pure PVDF membranes, PVDF-CS@CNTs-COOH increases pure water flux from 36.39 (L·m-2·h-1) to 85.25 (L·m-2·h-1), an increase of nearly 230%. The membrane exhibits excellent rejection performance in the filtration of six types of dye wastewater. The modified membranes also performed well in terms of rejection of mixed anionic and cationic dyes and also have a high performance in recycling, with a flux of over 94% for both anionic and cationic dyes. In addition, the adsorption curve fitting results showed that the adsorption process was more consistent with the pseudo-second-order adsorption kinetic model and Langmuir mode.
Collapse
|
5
|
Acrylic acid copolymers as adsorbent materials for the removal of anti-inflammatory pharmaceuticals from synthetic biomedical wastewaters. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Vaidya SM, Jadhav SM, Patil MJ, Mestry SU, Mahajan UR, Mhaske ST. Recent developments in waterborne polyurethane dispersions (WPUDs): a mini-review on thermal and mechanical properties improvement. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03814-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Filho ED, Brito EL, Nogueira DO, Fonseca JL. Thermal degradation and drug sorption in hybrid interpolyelectrolyte particles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R 6H 4. Drug Deliv Transl Res 2020; 11:1969-1982. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Balancing the antitumor activity and systemic toxicity of tripterine still faces a big challenge due to the narrow therapeutic window. To address this issue, we report a microemulsion system based on tripterine, brucea oil, and glycyrrhizin, and dual modified with both transferrin and cell-penetrating peptide SA-R6H4 (Tf/SA-R6H4-TBG-MEs) for combinational and tumor-targeted cancer therapy. Such a microemulsion exhibited a spherical shape with a size of ~50 nm and a mildly-negative charge. The half-maximal inhibitory concentration (IC50) of Tf/SA-R6H4-TBG-MEs against ovarian cancer SKOV3 cells was 0.27 ± 0.43 μg tripterine/mL, which was 5.85 times lower than that of free tripterine. The cellular uptake of tripterine after treatment with Tf/SA-R6H4-TBG-MEs was 1.56 times higher than that of TBG-MEs (non-modified microemulsion). In pharmacokinetics studies, the area under the curve of Tf/SA-R6H4-TBG-MEs increased by 1.97 times compared with that of the physical mixture group. The tumoral accumulation of tripterine was significantly improved in Tf/SA-R6H4-TBG-MEs group than TBG-MEs-treated group. In antitumor efficacy in vivo, Tf/SA-R6H4-TBG-MEs exhibited the strongest inhibition of tumor growth and the longest survival period among all the groups, which is associated with the rational combination, microemulsion system, and dual modification with tumor-targeted ligands. Importantly, Tf/SA-R6H4-TBG-MEs significantly reduced the toxicity of tripterine against the liver and kidney. Our design provides a new approach for efficient and safe ovarian cancer therapy based on a multicomponent combination.
Collapse
|
9
|
Elwakeel KZ, Elgarahy AM, Elshoubaky GA, Mohammad SH. Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:35-50. [PMID: 32399219 PMCID: PMC7203356 DOI: 10.1007/s40201-019-00435-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 12/30/2019] [Indexed: 05/04/2023]
Abstract
A new sorbent based on Sepia shells (cuttlefish bones) has been synthesized (SSBC) and tested for the sorption of cationic dye (crystal violet, CV) and an anionic dye (congo red, CR). SSBC was produced by reaction of sepia shells powder with urea in the presence of formaldehyde. In the first part of the work, the sorbent was characterized using scanning electron microscopy, energy dispersive X-ray analysis, Fourier-transform infra-red spectrometry and titration (for determining pHPZC). In a second step, sorption properties were tested on the two dyes through the study of pH effect, sorbent dosage, temperature and ionic strength; the sorption isotherms and uptake kinetics were analyzed at the optimum pH: Langmuir equation fits isotherm profiles while the kinetic profile can be described by the pseudo-second order rate equation. Maximum sorption capacities reach up to 0.536 mmol g-1 for CV and 0.359 mmol g-1 for CR, at pH 10.6 and 2.4, respectively. The comparison of sorption properties at different temperatures shows that the sorption is endothermic. Processing to the sorption under microwave irradiation (microwaved enforced sorption, MES) increases mass transfer and a contact time as low as 1 min is sufficient under optimized conditions (exposure time and power) reaching the equilibrium, while 2-3 h were necessary for "simple" sorption. Dye desorption was successfully tested using 0.5 M solutions of NaOH and HCl for the removal of CR and CV, respectively. The sorbent can be re-used for a minimum of four cycles of sorption/desorption. Finally, the sorbent was successfully tested on spiked tap water and real industrial wastewater.
Collapse
Affiliation(s)
- K. Z. Elwakeel
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - A. M. Elgarahy
- Zoology Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - G. A. Elshoubaky
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - S. H. Mohammad
- Zoology Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| |
Collapse
|
10
|
Topal M, Arslan Topal EI. Optimization of tetracycline removal with chitosan obtained from mussel shells using RSM. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Abdel Maksoud M, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Brito E, Gomes D, Plá Cid C, de Araújo J, Bohn F, Streck L, Fonseca JL. Superparamagnetic magnetite/IPEC particles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|