1
|
Zheng L, Du Y, Zhang L, Jin F, Li W, Zhou X, Yin Y, Weng Y, Xu D, Wang J. Enhanced therapeutic effects of all-trans retinoic acid nanostructured lipid carrier composite gel drug delivery system for alopecia areata. J Nanobiotechnology 2025; 23:351. [PMID: 40380336 PMCID: PMC12083027 DOI: 10.1186/s12951-025-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Alopecia areata (AA) affects approximately 2% of the global population and causes psychological distress. All-trans retinoic acid (ATRA) has the potential to promote hair regeneration; however, its clinical use is limited by skin irritation and low targeting specificity. To address these limitations, we designed an ATRA-loaded nanostructured lipid carrier gel (ATRA-NLC-Gel) drug delivery system to enhance the therapeutic effects of ATRA in AA. RESULTS ATRA-NLC showed a uniform nanoparticle size distribution and excellent biocompatibility. In vitro, they enhanced the uptake ability of dermal papilla cells, increased cell viability, and promoted cell proliferation by facilitating the cell cycle process. Compared to ATRA cream, ATRA-NLC-Gel significantly reduced skin irritation, prolonged residence time on the skin, and achieved a sustained and slow release of ATRA. Treatment with ATRA-NLC-Gel enhanced transdermal penetration and targeted enrichment in the hair follicle region, thereby significantly promoting hair regrowth. ATRA-NLC-Gel improved AA symptoms by upregulating CD200 and Ki-67 expression, activating the Wnt/β-catenin pathway. CONCLUSIONS ATRA-NLC-Gel enhanced the transdermal permeability and follicle-targeting efficacy of ATRA, alleviated ATRA-induced skin dryness and irritation, and effectively improved the symptoms of AA in AA model mice. ATRA-NLC-Gel offers a highly promising strategy for transdermal treatment of AA in clinical setting.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Yang Du
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lulu Zhang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fuxing Jin
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xuan Zhou
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yanping Yin
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Andrade JFM, Verbinnen A, Bakst A, Cunha-Filho M, Gelfuso GM, Gratieri T. Topical dutasteride for androgenic alopecia: current state and prospects. Ther Deliv 2025; 16:271-283. [PMID: 39641480 PMCID: PMC11875473 DOI: 10.1080/20415990.2024.2437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Androgenic alopecia has a high incidence, affecting 80% of men and 50% of women in their lifetimes. Although not a life-threatening disease, it can be a deep psychological burden to patients and still lacks an effective and safe treatment. Dutasteride is a5-alpha-reductase inhibitor approved to treat benign prostatic hyperplasia that is also commonly prescribed off-label to treat androgenic alopecia. However, oral dutasteride may cause several severe sexual and neurological sideeffects. Therefore, an effective, localized dutasteride treatment that can reduce the effects of systemic uptake is of great interest. Here, we review available therapies to treat androgenic alopecia focusing on topicalformulations developed thus far-including minoxidil, finasteride, and cosmetics-and on dutasteride-loaded nanocarriers targeting hair follicles.
Collapse
Affiliation(s)
| | | | | | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, Brazil
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, Brazil
| | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, Brazil
| |
Collapse
|
3
|
Andrade JFM, Verbinnen A, Bakst A, Cunha-Filho M, Gelfuso GM, Gratieri T. An update on nanocarriers for follicular-targeted drug delivery for androgenetic alopecia topical treatment. Expert Opin Drug Deliv 2025; 22:367-381. [PMID: 39841606 DOI: 10.1080/17425247.2025.2457950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION Androgenic alopecia is a multifactorial disease with a high incidence and a great psychological burden on patients. The current FDA-approved treatment is topical minoxidil or oral finasteride. However, both present significant limitations. While the systemic absorption of finasteride causes serious sexual side effects, minoxidil's low solubility imposes a challenge in obtaining a non-irritative and effective formulation. One way to solve such limitations is by using nanocarriers targeting the drug delivery to the hair follicles upon topical application. AREAS COVERED Here, we review which advancements have been made to achieve a more effective treatment for androgenic alopecia, focusing on nanocarriers for the topical drug delivery systems developed to target hair follicles. EXPERT OPINION The results from multiple reviewed studies demonstrate the potential of incorporating drugs into different nanocarriers to improve follicular targeting in drug delivery for androgenic alopecia treatment. However, many studies fail to perform the proper controls. Most studies also do not quantify the drug accumulation in all skin layers, especially in hair follicles, which avoids comparisons between different nanocarriers and, hence, reliable conclusions. Future experiments with a broader nanocarrier size range, suitable skin models and controls, and clinical tests to assess the safety of developed formulations will improve the androgenic alopecia treatment.
Collapse
Affiliation(s)
- Jayanaraian F M Andrade
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, Brazil
| | | | | | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, Brazil
| | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, Brazil
| |
Collapse
|
4
|
Abid F, Kim S, Savaliya B, Cesari L, Amirmostofian M, Abdella S, Trott DJ, Page SW, Garg S. Targeting Acne: Development of Monensin-Loaded Nanostructured Lipid Carriers. Int J Nanomedicine 2025; 20:2181-2204. [PMID: 39990290 PMCID: PMC11847435 DOI: 10.2147/ijn.s497108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose The emergence of antimicrobial resistance (AMR) has made treating acne vulgaris increasingly challenging, thus underscoring the urgent need for new antibacterial therapies. This research aimed to discover, for the first time, the efficacy of monensin (MON) against acne pathogens by encapsulating MON in nanostructured lipid carriers (NLCs) to achieve targeted topical delivery. Methods MON-loaded NLCs were formulated and optimized using the Design of Experiments (DoE) approach and incorporated in a gel formulation. The potential of MON, MON-NLCs, and its gel formulation was investigated against resistant human isolates of C. acnes, Staphylococcus aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis) using the agar dilution method. Using the porcine ear skin, the ex vivo deposition of MON was evaluated in different skin layers. The cytotoxicity assay was also performed at antibacterial concentrations using the keratinocyte cell line. Results MON-loaded NLCs were developed using stearic acid, oleic acid, and Tween® 80 and optimized with particle size, polydispersity index, and zeta potential of 96.65 ± 0.94 nm, 0.13 ± 0.01, and -36.50 ± 0.30 mV, respectively. The ex vivo deposition experiments showed that MON did not penetrate any skin layer using its water dispersion. However, a significant amount of MON was deposited into the epidermal layer using MON-NLC (4219.86 ± 388.32 ng/cm²) and gel formulation (8180.73 ± 482.37 ng/cm²), whereas no MON permeated to the dermis layer using gel formulation. The antibacterial study revealed the potential of MON, MON-NLC, and gel formulation against C. acnes isolates (MIC range 0.125-4 µg/mL, 0.25-4 µg/mL, and 0.125-1 µg/mL respectively). The cell viability results suggested MON-NLC formulation as a safe topical treatment effective at antibacterial concentrations. Conclusion This research highlights the novel ability of MON against resistant acne-causing pathogens and the potential of MON-NLCs to deliver MON to the targeted epidermal skin layer effectively.
Collapse
Affiliation(s)
- Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Bhumika Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Laura Cesari
- Faculty of Pharmacy, Aix-Marseille Université, Marseille, 13007, France
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
5
|
Martins Andrade JF, Weiss AV, Cunha-Filho M, Gelfuso GM, Gratieri T, Schneider M. Effect of gelatin nanoparticles' size and charge on iontophoretic targeted deposition to the hair follicles. Int J Pharm 2024; 667:124906. [PMID: 39505242 DOI: 10.1016/j.ijpharm.2024.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Hair follicles (HFs) represent a route of interest to drug delivery for treating several skin conditions. Iontophoresis, on the other hand, is a physical method to enhance drug permeation by applying a low electrical current to the formulation. HFs can be targeted following topical iontophoretic application, as they represent a pathway of lower electrical resistance, as well as a drug reservoir, in particular useful for nanoparticles (NPs), which can preferably accumulate in these structures. Combining both strategies may provide optimal results, but the literature still lacks evidence of the ideal NP characteristics for the iontophoretic drug delivery targeting the HFs. Here, we aimed to evaluate the effect of gelatin NPs' size and charge under iontophoresis application on NPs' deposition into the HFs. Four gelatin NP formulations were produced with varying gelatin concentrations and gelatin types (positively charged type A and negatively charged type B), with sizes ranging from 220 to 770 nm. A fluorescent dye, TRITC-dextran 150 kDa, was encapsulated for monitoring NPs deposition. Cutaneous penetration experiments were performed in vitro with and without iontophoresis for 6 h with pig ear skin. The deposition profile was assessed by confocal laser scanning microscopy. Photomicrographs showed a higher accumulation of the larger positively charged NPs (AL), reaching deeper portions of HFs, and showed iontophoresis further increased their deposition, resulting in the highest signal. In conclusion, these findings shed light on the applications of NPs and bring novel treatment opportunities for several diseases compromising the hair follicles.
Collapse
Affiliation(s)
- Jayanaraian F Martins Andrade
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, Brazil; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Agnes-Valencia Weiss
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marcílio Cunha-Filho
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, Brazil
| | - Guilherme M Gelfuso
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, Brazil
| | - Tais Gratieri
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, Brazil.
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Ahmed S, Attia H, Saher O, Fahmy AM. Augmented glycerosomes as a promising approach against fungal ear infection: Optimization and microbiological, ex vivo and in vivo assessments. Int J Pharm X 2024; 8:100295. [PMID: 39525529 PMCID: PMC11543555 DOI: 10.1016/j.ijpx.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
In the current study, voriconazole (VCZ) augmented glycerosomes were optimized for topical otomycosis management according to a 23 factorial design, employing a thin film hydration method. By optimizing Glycerol volume, limonene: VCZ ratio and Span® 60: soybean phosphatidyl choline (PC) ratio, glycerosomes with maximum percentage entrapment efficiency (%EE) and zeta potential (ZP) and minimum vesicle size (VS) and polydispersity index (PDI) were to be obtained. An optimal augmented glycerosomal formula (OAG) that contained 10 mg VCZ, 150 mg PC, and 3 mL glycerol, comprising 2.5: and 0.92:1 ratios of the latter two independent variables, was proposed via numerical optimization. OAG exhibited high %EE and ZP values and acceptable low values for VS and PDI (84.3 ± 2.0 %, -38.8 ± 1.8 mV, 191.0 ± 1.1 nm, and 0.192 ± 0.01, respectively). Extensive in vitro testing of OAG revealed the entrapment of VCZ within OAG, biphasic in vitro release profile, stability for up to 3 months at 2-8 °C and spherical morphology of OAG with VS like that obtained via zetasizer. OAG demonstrated higher permeated amounts of VCZ and flux values than VCZ suspension, leading to an enhancement ratio of 2.56 in the ex vivo permeation study. The deeper penetration ability of OAG demonstrated by Confocal Laser Scanning Microscopy and its superior in vitro antifungal activity confirmed the validity of the ex vivo study. Also, the histopathological study confirmed the safety of OAG for topical use, suggesting that VCZ OAG was a promising topical antimycotic formula.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama Saher
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Abdurrahman M. Fahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
7
|
Andrade JFM, Matos BN, Rocho RV, Barbalho GN, Cunha-Filho M, Gelfuso GM, Gratieri T. Evaluation of Dutasteride-Loaded Liposomes and Transfersomes for Follicular-Targeting for Androgenic Alopecia Topical Treatment. Pharmaceutics 2024; 16:1524. [PMID: 39771503 PMCID: PMC11728454 DOI: 10.3390/pharmaceutics16121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Although androgenic alopecia is the most prevalent among non-cicatricial alopecia, it still lacks an effective and safe treatment. Dutasteride (DUT) shows promising results in hair regrowth; however, oral DUT intake causes serious sexual adverse events. Hence, we produced liposomes with different bilayer structures and evaluated the capability of such systems in increasing DUT accumulation in the hair follicles. Methods: In vitro skin penetration tests were performed with porcine ear skin, and the follicular targeting factor (Tf) was calculated as the ratio between DUT amount in HFs and DUT recovered from the sum of all skin layers. Results: While the stiffer DUT-loaded liposome was not able to target the hair follicles in 12 h (Tf = 0.15), a DUT-loaded liposome with an edge activator in its composition, i.e., transfersomes, promoted better control over DUT release and a higher Tf (0.32) (p < 0.005). Conclusions: Transfersomes present higher affinity with DUT providing a better controlled release; hence, they are a better option for DUT follicle targeting compared to liposomes. Further formulation optimizations are needed aiming to prolong such targeting effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil; (J.F.M.A.); (B.N.M.); (R.V.R.); (G.N.B.); (M.C.-F.); (G.M.G.)
| |
Collapse
|
8
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
9
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
10
|
Ayatollahi Mousavi SA, Mokhtari A, Barani M, Izadi A, Amirbeigi A, Ajalli N, Amanizadeh A, Hadizadeh S. Advances of liposomal mediated nanocarriers for the treatment of dermatophyte infections. Heliyon 2023; 9:e18960. [PMID: 37583758 PMCID: PMC10424084 DOI: 10.1016/j.heliyon.2023.e18960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Due to the adverse effects associated with long-term administration of antifungal drugs used for treating dermatophytic lesions like tinea unguium, there is a critical need for novel antifungal therapies that exhibit improved absorption and minimal adverse effects. Nanoformulations offer a promising solution in this regard. Topical formulations may penetrate the upper layers of the skin, such as the stratum corneum, and release an appropriate amount of drugs in therapeutic quantities. Liposomes, particularly nanosized ones, used as topical medication delivery systems for the skin, may have various roles depending on their size, lipid and cholesterol content, ingredient percentage, lamellarity, and surface charge. Liposomes can enhance permeability through the stratum corneum, minimize systemic effects due to their localizing properties, and overcome various challenges in cutaneous drug delivery. Antifungal medications encapsulated in liposomes, including fluconazole, ketoconazole, croconazole, econazole, terbinafine hydrochloride, tolnaftate, and miconazole, have demonstrated improved skin penetration and localization. This review discusses the traditional treatment of dermatophytes and liposomal formulations. Additionally, promising liposomal formulations that may soon be available in the market are introduced. The objective of this review is to provide a comprehensive understanding of dermatophyte infections and the role of liposomes in enhancing treatment.
Collapse
Affiliation(s)
- Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abnoos Mokhtari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Azam Amanizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Hadizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Guan Y, Yan A, Qiang W, Ruan R, Yang C, Ma K, Sun H, Liu M, Zhu H. Selective Delivery of Tofacitinib Citrate to Hair Follicles Using Lipid-Coated Calcium Carbonate Nanocarrier Controls Chemotherapy-Induced Alopecia Areata. Int J Mol Sci 2023; 24:ijms24098427. [PMID: 37176141 PMCID: PMC10179728 DOI: 10.3390/ijms24098427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Chemotherapy-induced alopecia (CIA) is one of the common side effects in cancer treatment. The psychological distress caused by hair loss may cause patients to discontinue chemotherapy, affecting the efficacy of the treatment. The JAK inhibitor, Tofacitinib citrate (TFC), showed huge potential in therapeutic applications for treating baldness, but the systemic adverse effects of oral administration and low absorption rate at the target site limited its widespread application in alopecia. To overcome these problems, we designed phospholipid-calcium carbonate hybrid nanoparticles (PL/ACC NPs) for a topical application to target deliver TFC. The results proved that PL/ACC-TFC NPs showed excellent pH sensitivity and transdermal penetration in vitro. PL/ACC NPs offered an efficient follicular targeting approach to deliver TFC in a Cyclophosphamide (CYP)-induced alopecia areata mouse model. Compared to the topical application of TFC solution, PL/ACC-TFC NPs significantly inhibited apoptosis of mouse hair follicles and accelerated hair growth. These findings support that PL/ACC-TFC NPs has the potential for topical application in preventing and mitigating CYP-induced Alopecia areata.
Collapse
Affiliation(s)
- Yeneng Guan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chaobo Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Kai Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Andrade JFM, Cunha-Filho M, Gelfuso GM, Gratieri T. Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv 2023:1-14. [PMID: 37119173 DOI: 10.1080/17425247.2023.2209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
INTRODUCTION The skin is an attractive route for drug delivery. However, the stratum corneum is a critical limiting barrier for drug permeation. Nanoentrapment is a way to enhance cutaneous drug delivery, by diverse mechanisms, with a notable trend of nanoparticles accumulating into the hair follicles when topically applied. Iontophoresis is yet another way of increasing drug transport by applying a mild electrical field that preferentially passes through the hair follicles, for being the pathway of lower resistance. So, iontophoresis application to nanocarriers could further increase actives accumulation into the hair follicles, impacting cutaneous drug delivery. AREAS COVERED In this review, the authors aimed to discuss the main factors impacting iontophoretic skin transport when combining nanocarriers with iontophoresis. We further provide an overview of the conditions in which this combination has been studied, the characteristics of nanosystems employed, and hypothesize why the association has succeeded or failed to enhance drug permeation. EXPERT OPINION Nanocarriers and iontophoresis association can be promising to enhance cutaneous drug delivery. For better results, the electroosmotic contribution to the iontophoretic transport, mainly of negatively charged nanocarriers, charge density, formulation pH, and skin models should be considered. Moreover, the transfollicular pathway should be considered, especially when designing the nanocarriers.
Collapse
Affiliation(s)
- Jayanaraian F M Andrade
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
13
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
14
|
Martins Andrade JF, da Cunha Miranda T, Cunha-Filho M, Taveira SF, Gelfuso GM, Gratieri T. Iontophoresis application for drug delivery in high resistivity membranes: nails and teeth. Drug Deliv Transl Res 2022; 13:1272-1287. [PMID: 36209312 DOI: 10.1007/s13346-022-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
Iontophoresis has been vastly explored to improve drug permeation, mainly for transdermal delivery. Despite the skin's electrical resistance and barrier properties, it has a relatively high aqueous content and is permeable to many drugs. In contrast, nails and teeth are accessible structures for target drug delivery but possess low water content compared to the skin and impose significant barriers to drug permeation. Common diseases of these sites, such as nail onychomycosis and endodontic microbial infections that reach inaccessible regions for mechanical removal, often depend on time-consuming and ineffective treatments relying on drug's passive permeation. Iontophoresis application in nail and teeth structures may be a safe and effective way to improve drug transport across the nail and drug distribution through dental structures, making treatments more effective and comfortable for patients. Here, we provide an overview of iontophoresis applications in these "hard tissues," considering specificities such as their high electrical resistivity. Iontophoresis presents a promising option to enhance drug permeation through the nail and dental tissues, and further developments in these areas could lead to widespread clinical use.
Collapse
Affiliation(s)
| | - Thamires da Cunha Miranda
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goias (UFG), Goiânia, GO, 74605-170, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil.
| | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
15
|
Pouteria macrophylla Fruit Extract Microemulsion for Cutaneous Depigmentation: Evaluation Using a 3D Pigmented Skin Model. Molecules 2022; 27:molecules27185982. [PMID: 36144732 PMCID: PMC9504890 DOI: 10.3390/molecules27185982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Here, we verify the depigmenting action of Pouteria macrophylla fruit extract (EXT), incorporate it into a safe topical microemulsion and assess its effectiveness in a 3D pigmented skin model. Melanocytes-B16F10- were used to assess the EXT effects on cell viability, melanin synthesis, and melanin synthesis-related gene transcription factor expression, which demonstrated a 32% and 50% reduction of intra and extracellular melanin content, respectively. The developed microemulsion was composed of Cremophor EL®/Span 80 4:1 (w/w), ethyl oleate, and pH 4.5 HEPES buffer and had an average droplet size of 40 nm (PdI 0.40 ± 0.07). Skin irritation test with reconstituted epidermis (Skin Ethic RHETM) showed that the formulation is non-irritating. Tyrosinase inhibition was maintained after skin permeation in vitro, in which microemulsion showed twice the inhibition of the conventional emulsion (20.7 ± 2.2% and 10.7 ± 2.4%, respectively). The depigmenting effect of the microemulsion was finally confirmed in a 3D culture model of pigmented skin, in which histological analysis showed a more pronounced effect than a commercial depigmenting formulation. In conclusion, the developed microemulsion is a promising safe formulation for the administration of cutite fruit extract, which showed remarkable depigmenting potential compared to a commercial formulation.
Collapse
|
16
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
17
|
Oliveira PM, Alencar-Silva T, Pires FQ, Cunha-Filho M, Gratieri T, Carvalho JL, Gelfuso GM. Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical therapy of alopecia. Eur J Pharm Biopharm 2022; 172:78-88. [PMID: 35143972 DOI: 10.1016/j.ejpb.2022.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 01/13/2023]
Abstract
Alopecia is a condition associated with different etiologies, ranging from hormonal changes to chemotherapy, that affects over 80 million people in the USA. Nevertheless, there are currently few FDA-approved drugs for topical treatment, and existing formulations still present skin irritation issues, compromising treatment adherence. This work aimed to develop a safe formulation based on nanostructured lipid carriers (NLC) that entrap an association of minoxidil and latanoprost and target drug delivery to the hair follicles. To do so, thermal techniques combined with FTIR were used to assess the chemical compatibility of the proposed drug association. Then, NLC with 393.5 ± 36.0 nm (PdI<0.4) and +22.5 ± 0.2 mV zeta potential were produced and shown to entrap 86.9% of minoxidil and 99.9% of latanoprost efficiently. In vitro, the free drug combination was indicated to exert positive effects over human primary epidermal keratinocytes, supporting cell proliferation, migration and inducing the mRNA expression of MKI67 proliferation marker and VEGF - a possible effector for minoxidil-mediated hair growth. Interestingly, such a favorable drug combination profile was optimized when delivered using our NLC. Furthermore, according to the HET-CAM and reconstructed human epidermis assays, the nanoformulation was well tolerated. Finally, drug penetration was evaluated in vitro using porcine skin. Such experiments indicated that the NLC could be deposited preferentially into the hair follicles, causing a considerable increase in the penetration of the two drugs in such structures, compared to the control (composed of the free compounds) and generating a target-effect of approximately 50% for both drugs. In summary, present results suggest that hair follicle-targeted delivery of the minoxidil and latanoprost combination is a promising alternative to treat alopecia.
Collapse
Affiliation(s)
- Paula M Oliveira
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Thuany Alencar-Silva
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, 70790-160 Brasília, DF, Brazil
| | - Felipe Q Pires
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, 70790-160 Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil.
| |
Collapse
|
18
|
Moura RBP, Andrade LM, Alonso L, Alonso A, Marreto RN, Taveira SF. Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: Impact of electric current on lipid dynamics. Eur J Pharm Sci 2022; 168:106048. [PMID: 34699938 DOI: 10.1016/j.ejps.2021.106048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Nanostructured lipid carriers (NLC)-loaded with lopinavir (LPV) were developed for its iontophoretic transdermal delivery. Electronic paramagnetic resonance (EPR) spectroscopy of fatty acid spin labels and differential scanning calorimetry (DSC) were applied to investigate the lipid dynamic behavior of NLC before and after the electrical current. In vitro release and permeation studies, with and without anodic and cathodic iontophoresis were also performed. NLC-LPV had nanometric size (179.0 ± 2.5 nm), high drug load (∼x223C 4.14%) and entrapment efficiency (EE) (∼x223C 80%). NLC-LPV was chemically and physically stable after applying an electric current. The electrical current reduced EE after 3 h (67.21 ± 2.64%), resulting in faster LPV in vitro release. EPR demonstrated that iontophoresis decreased NLC lipid dynamics, which is a long-lasting effect. DSC studies demonstrated that electrical current could trigger the polymorphic transition of NLC and drug solubilization in the lipid matrix. NLC-LPV, combined with iontophoresis, allowed drug quantification in the receptor medium, unlike unloaded drugs. Cathodic iontophoresis enabled the quantification of about 7.9 µg/cm2 of LPV in the receptor medium. Passive NLC-LPV studies had to be done for an additional 42 h to achieve similar concentrations. Besides, anodic iontophoresis increased by 1.8-fold the amount of LPV in the receptor medium, demonstrating a promising antiviral therapy strategy.
Collapse
Affiliation(s)
- Rayssa Barbary Pedroza Moura
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Lígia Marquez Andrade
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Lais Alonso
- Instituto de Física, Universidade Federal de Goiás (UFG). Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás (UFG). Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás (UFG), Rua 240, Setor Leste Universitário, Goiânia, GO 74605-170, Brazil.
| |
Collapse
|
19
|
Nogueira NC, de Sá LLF, de Carvalho ALM. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech 2021; 23:32. [PMID: 34931256 DOI: 10.1208/s12249-021-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nanostructured lipid carriers (NLC) were developed as an alternative carrier system optimizing limitations found in topical treatments for superficial fungal infections, such as limited permeation through the skin. However, few published studies are focused on standardization and characterization of determinant variables of these lipid nanosystems' quality. Thus, this systematic review aims to compile information regarding the selection of lipids, surfactants, and preparation method that intimately relates to the final quality of this nanotechnology. For this, the search was carried with the following descriptors: 'nanostructured lipid carriers', 'topical', 'antifungal' separated by the Boolean operators 'and', present in the titles of the databases: Science Direct, Scopus and Pubmed. The review included experimental articles focused on the development of nanostructured lipid carriers targeted for topical application with antifungal activity, published from 2015 to 2021. Review articles, clinical studies, and studies on the development of other nanocarriers intended for other routes of administration were excluded from the study. The research included 26 articles, of which 58% were developed in India and Brazil, 53% published in the years 2019 and 2020. As for the selection of antifungal drugs incorporated into NLCs, the azole class had a preference over other classes, voriconazole being incorporated into 5 of the 26 developed NLC studied. It was also observed a predominance of medium chain triglycerides (MCT) as a liquid lipid and polysorbate 80 as a surfactant. Among other results, this review compiles the influences of each of the variables discussed in the quality parameters of NLCs, in order to guide future research involving the development of this technology. Graphical Abstract.
Collapse
|
20
|
Costa C, Cavaco-Paulo A, Matamá T. Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far? Int J Pharm 2021; 610:121273. [PMID: 34763036 DOI: 10.1016/j.ijpharm.2021.121273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
The importance of the hair follicle in the process of cutaneous drug penetration has been established since this skin appendage was recognized as an entry point for topically applied substances. A comprehensive review on the hair follicle as a target per se is here provided, exploring the current knowledge on both targeted regions and delivery systems that take advantage of this permeation route. The follicular penetration is a complex process, whose effectiveness and efficiency strongly depends on a diversity of different factors including follicular density and size, activity status of hair follicles and physicochemical properties of the topically applied substances. Nanocarriers represent a heterogeneous assembly of molecules organized into particles and they have revolutionized drug delivery in several areas of medicine, pharmacology and cosmetics. As they possess an inherent ability to use the follicular route, they are reviewed here having in perspective the hair follicle zones that they are able to reach as reported. In this way, a follicular road map for the different delivery systems was compiled to assist as a guiding tool for those that have interest in the development and/or application of such delivery systems for hair and skin treatment or care.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
21
|
Wang Z, Xue Y, Chen T, Du Q, Zhu Z, Wang Y, Wu Y, Zeng Q, Shen C, Jiang C, Yang Z, Zhu H, Liu L, Liu Q. Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect. Eur J Pharm Sci 2021; 167:106029. [PMID: 34601069 DOI: 10.1016/j.ejps.2021.106029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
The co-penetration of micellar vehicles and the encapsulated drugs into the skin layers, as well as the mechanisms underlying the penetration enhancement have not been clearly elucidated. We developed licochalcone A (LA)-loaded glycyrrhiza acid (GA) (GA+LA) micelles for topical delivery of LA into the epidermis. The in vitro co-penetration, penetration pathways, mechanism of interaction between skin and the micelles, and the in vitro and in vivo whitening effect of GA+LA micelles were evaluated. Co-penetration and penetration pathways were visualized on the abdominal skin of rats model with confocal laser scanning microscopy (CLSM) using a nile blue A-labeled GA (GA-NB). We found that GA significantly increased the transport of LA into the skin predominantly via the hair follicles and GA mainly accumulated in the SC and epidermis, while LA was localized in the epidermis and dermis. Moreover, 73.4% of the LA deposited into the epidermis within 12 h and approximately 9.32% of the LA permeated across the SC in the form of entire micelles within 24 h. GA-NB+LA micelles disaggregated and accumulated in the specific skin layers, and the LA released from the carrier penetrated into deeper layers. Moreover, the GA+LA micelles promoted drug penetration via intracellular or intercellular routes by loosening the skin surface and enhancing fluidization through lipid distortion and keratin denaturation. Furthermore, GA+LA micelles exhibited synergistic whitening effect on B16 cells and UVB-exposed C57BL/6 mice. Collectively, GA micelles can enhance penetration of LA to the epidermis mainly via the hair follicles following topical application, and reduce skin pigmentation.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yufang Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| |
Collapse
|
22
|
Folle C, Díaz-Garrido N, Sánchez-López E, Marqués AM, Badia J, Baldomà L, Espina M, Calpena AC, García ML. Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics 2021; 13:pharmaceutics13091501. [PMID: 34575577 PMCID: PMC8471012 DOI: 10.3390/pharmaceutics13091501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| | - Ana Maria Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Costa C, Fernandes B, Guimarães D, Nogueira E, Martins M, Matamá T, Cavaco-Paulo A. Comparing the delivery to the hair bulb of two fluorescent molecules of distinct hydrophilicities by different nanoparticles and a serum formulation. Int J Pharm 2021; 602:120653. [PMID: 33915189 DOI: 10.1016/j.ijpharm.2021.120653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
The follicular route is an important drug penetration pathway in any topical application, either concerning dermatological and cosmetic skin treatments or any transdermal administration regimen. Efficient transport into follicles will depend on drug inherent properties but also on the chosen vehicle. The main study goal was to compare several systems for the delivery to the hair bulb of two fluorescent molecules of different water affinities: the hydrophobic Nile Red and the quite similar but hydrophilic Nile Blue. Three common nanoparticle types were compared in terms of encapsulation efficiency and stability: liposomes, ethosomes and polymeric nanoparticles. A liquid serum-like formulation was also developed, adjusting the final ethanol amount to the type of dye to be solubilized. Then, this formulation and the nanoparticle systems that successfully passed characterization and stability stages were further studied on their ability to reach the bulb. The serum formulation was able to deliver, both drug models, to deeper follicular regions than nanoparticles. Attending to the envisioned zone target of the follicle, the simplest approach proved to be the best choice from all the systems tested in this work. Nonetheless, nanocarriers and the inherent complexity of their manufacturing processes may be justified under very specific requirements.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Fernandes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Diana Guimarães
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Eugénia Nogueira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Praceta do Vilar, Urbanização Quinta dos Órfãos, Bloco A - Loja 6, 4710-453 Braga, Portugal
| | - Madalena Martins
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Praceta do Vilar, Urbanização Quinta dos Órfãos, Bloco A - Loja 6, 4710-453 Braga, Portugal
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
24
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
25
|
Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr Polym 2021; 253:117295. [DOI: 10.1016/j.carbpol.2020.117295] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
|
26
|
Araujo VHS, Delello Di Filippo L, Duarte JL, Spósito L, Camargo BAFD, da Silva PB, Chorilli M. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2020; 47:79-90. [PMID: 33156736 DOI: 10.1080/1040841x.2020.1843399] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin. An interesting approach to optimise biomolecules' activity in the skin is the use of nanosystems for drug delivery, especially solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which in the past decade has shown advantages like increased adhesiveness, great occlusive properties and higher biomolecule deposition in stratum corneum when designed for topical application. Considering the demand for more effective therapeutic alternatives and the promising characteristics of SLN and NLC for topical application, the present study sought to gather studies that investigated the potential of using SLN and NLC for the treatment of cutaneous fungal infections. Studies demonstrated that these nanosystems showed optimisation, mostly, of the effectiveness of biomolecules besides other biopharmaceutical properties, in addition to offering potential occlusion and hydration of the applied region.
Collapse
Affiliation(s)
| | | | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
27
|
Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci Rep 2020; 10:19285. [PMID: 33159142 PMCID: PMC7648625 DOI: 10.1038/s41598-020-76381-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration. Liposomes elaborated with phosphatidylcholine (LP PC) or phosphatidylcholine and spermine (LP PC: SPM) were stable under storage at 6 ºC for 30 days, showed mucoadhesive characteristics, and were non-irritant, according to HET-CAM tests. Electron paramagnetic resonance spectroscopy measurements showed that neither the drug nor spermine incorporations produced evident alterations in the fluidity of the liposome's membranes, which retained their structural stability even under iontophoretic conditions. Mean diameter and zeta potential were 177.2 ± 2.7 nm and − 5.7 ± 0.3 mV, respectively, for LP PC; and 175.4 ± 1.9 nm and + 19.5 ± 1.0 mV, respectively, for LP PC:SPM. The minimal inhibitory concentration (MIC) and the minimal bactericide concentration (MBC) of the liposomes for P. aeruginosa showed values lower than the commercial formulation (Besivance). Nevertheless, both formulations presented a similar increase in permeability upon the electric current application. Hence, liposome charge incorporation did not prove to be additionally advantageous for iontophoretic therapy. Passive drug penetration was evaluated through a novel in vitro ocular model that simulates the lacrimal flow and challenges the formulation resistance in the passive delivery situation. As expected, LP PC: SPM showed higher permeation than the control (Besivance). In conclusion, besifloxacin incorporation into positively charged liposomes improved passive topical delivery and can be a good strategy to improve topical ophthalmic treatments.
Collapse
|
28
|
Silva TV, de Barros NR, Costa-Orlandi CB, Tanaka JL, Moro LG, Pegorin GS, Oliveira KSM, Mendes-Gianinni MJS, Fusco-Almeida AM, Herculano RD. Voriconazole-natural latex dressings for treating infected Candida spp. skin ulcers. Future Microbiol 2020; 15:1439-1452. [DOI: 10.2217/fmb-2020-0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: This work aimed to develop a membrane based on voriconazole (VCZ)-loaded natural rubber latex (NRL) for treating infected ulcers with Candida spp. and study their interaction, drug release, antifungal activity against Candida parapsilosis and biological characterization. Materials & methods: VCZ-loaded NRL membrane was produced by casting method. Results: Infrared spectrum showed that the incorporation of VCZ into the NRL membrane maintained its characteristics. Its mechanical properties were considered suitable for dermal application. The VCZ was able to release from NRL membrane, maintaining its antifungal activity against C. parapsilosis, besides did not present hemolytic effects. Conclusion: The VCZ-NRL membrane showed good results in mechanical, antifungal and biological assays, representing an interesting alternative to treatment of infected wound with Candida spp.
Collapse
Affiliation(s)
- Thainá V da Silva
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Natan R de Barros
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Biochemistry & Chemical Technology Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Caroline B Costa-Orlandi
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Jean L Tanaka
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Lincoln G Moro
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Giovana S Pegorin
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Biochemistry & Chemical Technology Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Kassandra SM Oliveira
- Rural Engineering & Socioeconomics Department, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, São Paulo, Brazil
| | - Maria JS Mendes-Gianinni
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Rondinelli D Herculano
- Biotechnology & Bioprocesses Engineering Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| |
Collapse
|
29
|
The influence of sebaceous content on the performance of nanosystems designed for the treatment of follicular diseases. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17:357-377. [PMID: 32064958 DOI: 10.1080/17425247.2020.1727883] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: From a biopharmaceutical standpoint, the skin is recognized as an interesting route for drug delivery. In general, small molecules are able to penetrate the stratum corneum, the outermost layer of the skin. In contrast, the delivery of larger molecules, such as peptides and proteins, remains a challenge. Nanoparticles have been exploited not only to enhance skin penetration of drugs but also to expand the range of molecules to be clinically used.Areas covered: This review focus on Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) for skin administration. We discuss the selection criteria for lipids, surfactants, and surface modifiers commonly in use in SLN/NLC, their production techniques, and the range of drugs loaded in these lipid nanoparticles for the treatment of skin disorders.Expert opinion: Depending on the lipid and surfactant composition, different nanoparticle morphologies can be generated. Both SLN and NLC are composed of lipids that resemble those of the skin and sebum, which contribute to their enhanced biocompatibility, with limited toxicological risk. SLN and NLC can be loaded with very chemically different drugs, may provide a tunable release profile, can be produced in a sterilized environment, and be scaled-up without the need for organic solvents.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Iara Baldim
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.,Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Nitesh Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Francisco M Gama
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
31
|
Dutasteride nanocapsules for hair follicle targeting: Effect of chitosan-coating and physical stimulus. Int J Biol Macromol 2020; 151:56-61. [PMID: 32068053 DOI: 10.1016/j.ijbiomac.2020.02.143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
In general, nanometer-sized drug delivery systems have a natural tendency for accommodation in the follicular cavities, which makes them advantageous in the treatment of conditions affecting these structures. Still, follicular targeting enhancement can improve therapy outcomes. Here, we compare two strategies to further promote dutasteride follicular-targeted delivery: the chemical modulation of nanosystem surface properties by coating with the natural polymer chitosan, and the application of a massage. For this, poly-(ɛ-caprolactone)-lipid-core nanocapsules (NC) containing dutasteride were developed and had their permeation profile compared to chitosan-coated nanocapsules (NC-CS). Nanocapsules showed high drug encapsulation efficiency (>94%), and stability for up to 90 days of storage. As expected, chitosan coating increased the size and zeta potential, from 199.0 ± 0.5 nm (PdI of 0.12) and - 13.6 ± 0.6 mV to 224.9 ± 3.4 nm (PdI 0.23) and + 40.2 ± 0.8 mV, respectively. Both coated and non-coated nanoparticles targeted the hair follicles compared to a drug solution. Enhanced hair follicles targeting was observed after the massage procedure, with 5 and 2-fold increases relative to NC and NC-CS, respectively. In conclusion, this work demonstrates dutasteride nanocapsules can target the follicular casts, and a simple physical stimulation can enhance 5-times the drug amount accumulated.
Collapse
|
32
|
Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep 2020; 10:176. [PMID: 31932640 PMCID: PMC6957495 DOI: 10.1038/s41598-019-56760-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clobetasol propionate (CLO) is a potent glucocorticoid used to treat inflammation-based skin, scalp, and hair disorders. In such conditions, hair follicles (HF) are not only the target site but can also act as drug reservoirs when certain formulations are topically applied. Recently, we have demonstrated nanostructured lipid carriers (NLC) containing CLO presenting epidermal-targeting potential. Here, the focus was evaluating the HF uptake provided by such nanoparticles in comparison to a commercial cream and investigating the influence of different physical stimuli [i.e., infrared (IR) irradiation (with and without metallic nanoparticles-MNP), ultrasound (US) (with and without vibration) and mechanical massage] on their follicular targeting potential. Nanosystems presented sizes around 180 nm (PdI < 0.2) and negative zeta potential. The formulation did not alter skin water loss measurements and was stable for at least 30 days at 5 °C. Nanoparticles released the drug in a sustained fashion for more than 3 days and increased passively about 40 times CLO follicular uptake compared to the commercial cream. Confocal images confirmed the enhanced follicular delivery. On the one hand, NLC application followed by IR for heat generation showed no benefit in terms of HF targeting even at higher temperatures generated by metallic nanoparticle heating. On the other hand, upon US treatment, CLO retention was significantly increased in deeper skin layers. The addition of mechanical vibration to the US treatment led to higher follicular accumulation compared to passive exposure to NLC without stimuli. However, from all evaluated stimuli, manual massage presented the highest follicular targeting potential, driving more than double the amount of CLO into the HF than NLC passive application. In conclusion, NLC showed great potential for delivering CLO to HF, and a simple massage was capable of doubling follicular retention.
Collapse
|
33
|
Iontophoresis enhances voriconazole antifungal potency and corneal penetration. Int J Pharm 2019; 576:118991. [PMID: 31884059 DOI: 10.1016/j.ijpharm.2019.118991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Strategies to enhance corneal penetration of voriconazole (VOR) could improve the treatment of fungal keratitis. Here, we evaluated the use of iontophoresis for ocular VOR delivery from either: (i) a cyclodextrin inclusion complex (CD VOR), (ii) a liposome (LP VOR), and (iii) a chitosan-coated liposome (LP VOR CS). LP VOR CS presented mean diameter of 139.2 ± 1.3 nm and zeta potential equal to + 3.3 ± 1.5 mV compared to 134.6 ± 1.7 and -8.2 ± 3.0 mV of LP VOR, which, together with mucin mucoadhesion study, confirmed chitosan-coating. Both drug and liposomal formulations were stable under the influence of an applied electric current. Interestingly, in vitro studies in Candida glabrata culture indicated a decrease in VOR MIC values following iontophoresis (from 0.28 to 0.14 µg/mL). Iontophoresis enhanced drug penetration into the cornea. After 10 min of a 2 mA/cm2 applied current, corneal retained amounts were 45.4 ± 11.2, 30.4 ± 2.1 and 30.6 ± 2.9 µg/cm2 for, respectively, CD VOR, LP VOR, and LP VOR CS. In conclusion, iontophoresis increases drug potency and enhances drug penetration into the cornea, showing potential to be used as "an emergency burst delivery approach".
Collapse
|
34
|
Pires FQ, da Silva JKR, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf B Biointerfaces 2019; 182:110382. [DOI: 10.1016/j.colsurfb.2019.110382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 01/30/2023]
|
35
|
Guo D, Liu J, Fan Y, Cheng J, Shi Y, Zou J, Zhang X. Optimization, characterization and evaluation of liposomes from Malus hupehensis (Pamp.) Rehd. extracts. J Liposome Res 2019; 30:366-376. [DOI: 10.1080/08982104.2019.1651334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongyan Guo
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ji Liu
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yu Fan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiangxue Cheng
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
36
|
Ferreira-Nunes R, Ferreira LA, Gratieri T, Cunha-Filho M, Gelfuso GM. Stability-indicating analytical method of quantifying spironolactone and canrenone in dermatological formulations and iontophoretic skin permeation experiments. Biomed Chromatogr 2019; 33:e4656. [PMID: 31322746 DOI: 10.1002/bmc.4656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
A simple, stability-indicating, chromatographic method of quantifying spironolactone (SPI) and its metabolite, canrenone (CAN), in the presence of excipients typical in dermatological formulations and skin matrices in studies of passive and iontophoretic permeation was proposed and validated here. SPI and CAN were separated using a reversed-phase column with a mobile phase of methanol-water (60:40, v/v) at a flow rate of 1.0 mL/min. Data were collected with a UV detector at 238 and 280 nm, with retention times of 6.2 and 7.9 min for SPI and CAN, respectively. The method was precise, accurate and linear (r2 > 0.99) in a concentration range of 1-30 μg/mL, and recovery rates of SPI and CAN from the different skin layers exceeded 85%. The method was not only sensitive (LOD of 0.05 and 0.375 μg/mL and LOQ of 0.157 and 1.139 μg/mL for SPI and CAN, respectively) but also selective against skin matrices and highly representative components of topical formulations. The method moreover demonstrated SPI's degradation in iontophoresis by applying Pt-AgCl electrodes and its continued drug stability using Ag-AgCl electrodes. Altogether, the method proved valuable for quantifying SPI and CAN and may be applied in developing and controlling the quality of dermatological products.
Collapse
Affiliation(s)
- Ricardo Ferreira-Nunes
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Larissa A Ferreira
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
37
|
Kollross B, Cunha-Filho M, Gelfuso GM, Gratieri T. Regulatory Requirements and Innovation: A Comparison of the Dermatologic Antifungal Drug Product Markets in Brazil and United States. Ther Innov Regul Sci 2018; 53:661-668. [PMID: 30286614 DOI: 10.1177/2168479018791791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Development of novel dermatological topical products for the treatment of cutaneous fungal infections is a constant necessity, especially in developing countries. Through public health policies, many developing countries have facilitated in the last decades the entry of generic products, which can be superficially seen as a threat to innovation. To verify whether regulatory requirements, or the waiving of some requirements, could have an impact on innovation, we performed a detailed technical comparison of the dermatologic antifungal markets of Brazil and of the United States, taking Brazil as an example of a developing country with more lenient requirements regarding the registration of generic topical drug products. METHODS The official databank of ANVISA (DATAVISA) and of US Food and Drug Administration (Orange Book) were assessed for valid topical dermatological antifungal drug products registered. RESULTS The Brazilian market has a greater number of registered drug products encompassing a greater variety of drug substances than the US, but the latter comprises more products with novel technologies. In both countries, cream was the predominant dosage form and imidazoles were the major substance group. Ketoconazole was the lead active substance in Brazil and ciclopirox was the lead drug in the US. Generic products dominated both markets. CONCLUSIONS Despite the great number of registered products, the Brazilian market lacks the latest technologies, reflecting that the ease of generics registration is not accompanied by innovation.
Collapse
Affiliation(s)
- Bianca Kollross
- 1 Management of Post-registration Evaluation of Synthetic's Medicines, General Office of Medicines, Brazilian Health Surveillance Agency (ANVISA), Brasília, Brazil.,2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Marcilio Cunha-Filho
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Guilherme Martins Gelfuso
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Tais Gratieri
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|