1
|
Shao H, Liu M, Jiang H, Zhang Y. Polysaccharide-based drug delivery targeted approach for colon cancer treatment: A comprehensive review. Int J Biol Macromol 2025; 302:139177. [PMID: 39798740 DOI: 10.1016/j.ijbiomac.2024.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release. Polysaccharide-based CDDS, utilizing natural polymers like chitosan, cyclodextrin, pectin, guar gum, alginate, hyaluronic acid, dextran, chondroitin sulfate, and inulin, have emerged as innovative approaches for improving the specificity and efficacy of colon cancer treatments. These biocompatible and biodegradable polymers enable site-specific drug delivery, enhance tumor apoptosis, reduce systemic side effects, and improve patient compliance. This review evaluates recent advancements in polysaccharide-based CDDS, detailing their drug release mechanisms, therapeutic potential, and challenges in overcoming gastrointestinal transit and pH variability. Studies highlight the successful formulation of nanoparticles, microspheres, and other delivery systems, demonstrating targeted drug delivery, improved bioavailability, and enhanced cytotoxicity against colon cancer cells in-vitro and in-vivo. The review underscores the need for continued research on polysaccharide-based CDDS for colon cancer treatment, offering a path toward more effective, patient-centered oncological care.
Collapse
Affiliation(s)
- Hua Shao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Ying Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Kraisit P, Hirun N, Limpamanoch P, Sawaengsuk Y, Janchoochai N, Manasaksirikul O, Limmatvapirat S. Effect of Cremophor RH40, Hydroxypropyl Methylcellulose, and Mixing Speed on Physicochemical Properties of Films Containing Nanostructured Lipid Carriers Loaded with Furosemide Using the Box-Behnken Design. Polymers (Basel) 2024; 16:1605. [PMID: 38891551 PMCID: PMC11174878 DOI: 10.3390/polym16111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.
Collapse
Affiliation(s)
- Pakorn Kraisit
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Premjit Limpamanoch
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
| | - Yongthida Sawaengsuk
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Narumol Janchoochai
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Ornpreeya Manasaksirikul
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Sontaya Limmatvapirat
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| |
Collapse
|
4
|
Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine (Lond) 2023; 18:1495-1514. [PMID: 37830424 DOI: 10.2217/nnm-2023-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.
Collapse
Affiliation(s)
- Digvijay Dattatray Desai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Mugdha Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, United Kingdom
| |
Collapse
|
5
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
6
|
Ji S, Sun R, Wang W, Xia Q. Preparation, characterization, and evaluation of tamarind seed polysaccharide-carboxymethylcellulose buccal films loaded with soybean peptides-chitosan nanoparticles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
8
|
Prado VC, Moenke K, Osmari BF, Pegoraro NS, Oliveira SM, Cruz L. Development of Guar Gum Hydrogel Containing Sesamol-Loaded Nanocapsules Designed for Irritant Contact Dermatitis Treatment Induced by Croton Oil Application. Pharmaceutics 2023; 15:285. [PMID: 36678913 PMCID: PMC9861215 DOI: 10.3390/pharmaceutics15010285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Irritant contact dermatitis is usually treated with corticosteroids, which cause expressive adverse effects. Sesamol is a phenolic compound with anti-inflammatory and antioxidant properties. This study was designed to evaluate a hydrogel containing sesamol-loaded ethylcellulose nanocapsules for the treatment of irritant contact dermatitis. The nanocapsules presented a size in the nanometric range, a negative zeta potential, a sesamol content close to the theoretical value (1 mg/mL), and a 65% encapsulation efficiency. Nanoencapsulation protected sesamol against UVC-induced degradation and increased the scavenging activity assessed by ABTS and DPPH radicals. The hydrogels were prepared by thickening the nanocapsule suspensions with guar gum (2.5%). The hydrogels maintained the nanometric size of the nanocapsules and a sesamol content of approximately 1 mg/g. The HET-CAM assay classified the hydrogels as nonirritating. The in vitro release of the hydrogel containing sesamol in the nanoencapsulated form demonstrated an initial burst effect followed by a prolonged sesamol release and a lower skin permeation in comparison with the hydrogel containing free sesamol. In addition, it exhibited the best anti-inflammatory effect in the irritant contact dermatitis model induced by croton oil, reducing ear edema and inflammatory cells infiltration, similar to dexamethasone (positive control). Therefore, the hydrogel containing sesamol in the nanoencapsulated form seemed to have a therapeutic potential in treating irritant contact dermatitis.
Collapse
Affiliation(s)
- Vinicius Costa Prado
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Kauani Moenke
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Bárbara Felin Osmari
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Natháli Schopf Pegoraro
- Laboratório de Neurotoxicidade e Psicofarmacologia, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratório de Neurotoxicidade e Psicofarmacologia, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| |
Collapse
|
9
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
10
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
11
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
12
|
Improved Bioavailability of Ebastine through Development of Transfersomal Oral Films. Pharmaceutics 2021; 13:pharmaceutics13081315. [PMID: 34452276 PMCID: PMC8401636 DOI: 10.3390/pharmaceutics13081315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022] Open
Abstract
The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.
Collapse
|
13
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
14
|
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm 2021; 604:120759. [PMID: 34098053 DOI: 10.1016/j.ijpharm.2021.120759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Orally drug delivery film has received extensive interest duo to a distinct set of its advantageous properties compared to the traditional orally administered dosages, including faster rate of drug absorption, higher bioavailability and better patient compliance for children and elders with swallowing deficiencies. In particular, its potential capacity of delivering proteins and peptides has further attracted great attention. Lately, tremendous advances have been made in designing and developing both novel mucoadhesive films and orodispersible films to fulfill specific accomplishments of drug delivery. This review aims to summarize those newly developed oral films, discussing their formulation strategies, manufacturing methods as well as advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Mengning He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmeng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ni Yang
- School of Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Wesdon Powder Pharma Coatings Co. Ltd., Ningbo 315042, China.
| |
Collapse
|
15
|
Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 2021; 181:653-671. [PMID: 33766594 DOI: 10.1016/j.ijbiomac.2021.03.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Guar gum-based drug carrier systems have gained attention for the delivery of various therapeutic agents via different administration routes for attaining controlled and sustained release. Guar gum offers a safe and effective system for drug delivery due to its natural occurrence, easy availability, biocompatibility, and biodegradability, besides simple and mild preparation techniques. Furthermore, the possibility of using various routes such as oral, buccal, transdermal, intravenous, and gene delivery further diversify guar gum applications in the biomedical field. This review delineates the recent investigation on guar gum-based drug carrier systems like hydrogels, nanoparticles, nanocomposites, and scaffolds along with their related delivery routes. Also, the inclusion of data of the loading and subsequent release of the drugs enables to explore the noble and improved drug targeting therapies.
Collapse
Affiliation(s)
- Diksha Verma
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
16
|
Coelho MC, Ribeiro TB, Oliveira C, Batista P, Castro P, Monforte AR, Rodrigues AS, Teixeira J, Pintado M. In Vitro Gastrointestinal Digestion Impact on the Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Tomato Flours Obtained after Conventional and Ohmic Heating Extraction. Foods 2021; 10:foods10030554. [PMID: 33800085 PMCID: PMC8002034 DOI: 10.3390/foods10030554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.
Collapse
Affiliation(s)
- Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Tânia B. Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Oliveira do Hospital, 3405-155 Lagares, Portugal
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Patricia Batista
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Pedro Castro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Ana Rita Monforte
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | | | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- Correspondence:
| |
Collapse
|
17
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
18
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
19
|
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Islam N, Irfan M, Khan SUD, Syed HK, Iqbal MS, Khan IU, Mahdy A, Raafat M, Hossain MA, Inam S, Munir R, Ishtiaq M. Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization. Pharmaceutics 2021; 13:54. [PMID: 33406587 PMCID: PMC7823785 DOI: 10.3390/pharmaceutics13010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were -26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film's disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Amina Mahdy
- Pharmacology Department, International School of Medicine, Medipol University, Istanbul 34810, Turkey; or
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Sana Inam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| |
Collapse
|
21
|
Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, Vizirianakis IS, Fatouros DG. Fabrication of Mucoadhesive Buccal Films for Local Administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printing. J Pharm Sci 2020; 109:2757-2766. [PMID: 32497597 DOI: 10.1016/j.xphs.2020.05.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
In the area of developing oromucosal drug delivery systems, mucoadhesive buccal films are the most promising formulations for either systemic or local drug delivery. The current study presents the fabrication of buccal films, by combining fused deposition modeling (FDM) and inkjet printing. Hydroxypropyl methylcellulose-based films were fabricated via FDM, containing the non-steroidal anti-inflammatory drug ketoprofen. Unidirectional release properties were achieved, by incorporating an ethyl cellulose-based backing layer. The local anesthetic lidocaine hydrochloride, combined with the permeation enhancer l-menthol, was deposited onto the film by inkjet printing. Physicochemical analysis showed alterations in the characteristics of the films, and the mucoadhesive and mechanical properties were effectively modified, due to the ink deposition on the substrates. The in vitro release data of the active pharmaceutical compounds, as well as the permeation profiles across ex vivo porcine buccal mucosa and filter-grown TR146 cells of human buccal origin, were associated with the presence of the permeation enhancer and the backing layer. The lack of any toxicity of the fabricated films was demonstrated by the MTT viability assay. This proof-of-concept study provides an alternative formulation approach of mucoadhesive buccal films, intended for the treatment of local oromucosal diseases or systemic drug delivery.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Johan Boetker
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
22
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|