1
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2025; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
3
|
Song Y, Sun M, Wu H, Zhao W, Wang Q. Temperature Sensor Based on Surface Plasmon Resonance with TiO 2-Au-TiO 2 Triple Structure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7766. [PMID: 36363358 PMCID: PMC9653889 DOI: 10.3390/ma15217766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Temperature sensors have been widely applied in daily life and production, but little attention has been paid to the research on temperature sensors based on surface plasmon resonance (SPR) sensors. Therefore, an SPR temperature sensor with a triple structure of titanium dioxide (TiO2) film, gold (Au) film, and TiO2 nanorods is proposed in this article. By optimizing the thickness and structure of TiO2 film and nanorods and Au film, it is found that the sensitivity of the SPR temperature sensor can achieve 6038.53 nm/RIU and the detection temperature sensitivity is -2.40 nm/°C. According to the results, the sensitivity of the optimized sensor is 77.81% higher than that of the sensor with pure Au film, which is attributed to the TiO2(film)-Au-TiO2(nanorods) structure. Moreover, there is a good linear correlation (greater than 0.99) between temperature and resonance wavelength in the range from 0 °C to 60 °C, which can ensure the detection resolution. The high sensitivity, FOM, and detection resolution indicate that the proposed SPR sensor has a promising application in temperature monitoring.
Collapse
Affiliation(s)
- Yutong Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Sun
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoyu Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wanli Zhao
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Li J, Liu D, Zhou D, Shao L, Chen X, Song H. Label-free photoelectrochemical biosensor for alpha-fetoprotein detection based on Au/CsxWO3 heterogeneous films. Talanta 2021; 225:122074. [DOI: 10.1016/j.talanta.2020.122074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
|
6
|
Xie J, Zhang L, Liu B, Bai P, Wang C, Xu J, Wang H. Highly Selective Gas Sensor Based on Hydrophobic Silica Decorated with Trimethoxyoctadecylsilane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1956-1966. [PMID: 33352038 DOI: 10.1021/acsami.0c18582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Trimethoxyoctadecylsilane (OTMS) was successfully used to decorate mesoporous silica with a self-assembly method to enhance the relative gas selectivity. A quartz crystal microbalance was employed to measure the gas-sensing properties. The content of OTMS was the crucial factor that greatly affected the adsorption capacity (q) of silica, which could be converted to relative selectivity (S) to study the sensing mechanism. With increasing OTMS content, q was far higher for small-molecule gases compared to volatile organic compounds (VOCs), which could be explained by the polarity of the bonding objects, and S reached a maximum value of 45.71%. When exposed to VOCs, S was always greater than 0 among the three alcohols. The sensing mechanisms of undecorated silica and OTMS-decorated silica were quite different; the three-state mechanism was proposed to explain the sensing mechanism of OTMS-decorated silica. When exposed to small-molecule gases, the atoms that bonded with carbon atoms on OTMS greatly influenced q. With increasing OTMS content, the bonding energy of OTMS with CO2 was far less than that with other molecules, resulting in a relative selectivity as high as 38.69%. Furthermore, macroperformance and microproperties were combined in three-dimensional coordinates, which could be applied to predict the sensing performance of silica.
Collapse
Affiliation(s)
- Juan Xie
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Lei Zhang
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Biao Liu
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Penghui Bai
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Chenjie Wang
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Jiake Xu
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| | - Hu Wang
- School of New Energy and Materials, Southwest Petroleum University (SWPU), Chengdu 610500, China
| |
Collapse
|
7
|
Zappi D, Ramma MM, Scognamiglio V, Antonacci A, Varani G, Giardi MT. High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection. BIOSENSORS-BASEL 2020; 10:bios10110176. [PMID: 33203038 PMCID: PMC7696430 DOI: 10.3390/bios10110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023]
Abstract
Gas sensors have been object of increasing attention by the scientific community in recent years. For the development of the sensing element, two major trends seem to have appeared. On one hand, the possibility of creating complex structures at the nanoscale level has given rise to ever more sensitive sensors based on metal oxides and metal-polymer combinations. On the other hand, gas biosensors have started to be developed, thanks to their intrinsic ability to be selective for the target analyte. In this review, we analyze the recent progress in both areas and underline their strength, current problems, and future perspectives.
Collapse
Affiliation(s)
- Daniele Zappi
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Matiss Martins Ramma
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
| | - Viviana Scognamiglio
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Amina Antonacci
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Gabriele Varani
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
| | - Maria Teresa Giardi
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
- Correspondence:
| |
Collapse
|