1
|
AlMatar M, Makky EA, Ramli ANM, Kafkas NE, Köksal F. Polysaccharides to combat viruses (Covid-19) and microbes: New updates. Curr Mol Pharmacol 2022; 15:803-814. [PMID: 35023463 DOI: 10.2174/1874467215666220112150332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022]
Abstract
COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents' development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Education and Art, Department of Biology, Sohar University, Sohar, 311, Sultanate of Oman
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | | | - Fatih Köksal
- Faculty of Medicine, Çukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Lou Y, Schapman D, Mercier D, Alexandre S, Dé E, Brunel JM, Kébir N, Thébault P. Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Dop RA, Neill DR, Hasell T. Antibacterial Activity of Inverse Vulcanized Polymers. Biomacromolecules 2021; 22:5223-5233. [PMID: 34784205 PMCID: PMC7614836 DOI: 10.1021/acs.biomac.1c01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inverse vulcanization is a bulk polymerization method for synthesizing high sulfur content polymers from elemental sulfur, a byproduct of the petrochemical industry, with vinylic comonomers. There is growing interest in polysulfides as novel antimicrobial agents due to the antimicrobial activity of natural polysulfides found in garlic and onions (Tsao et al. J. Antimicrob. Chemother. 2001, 47, 665-670). Herein, we report the antibacterial properties of several inverse vulcanized polymers against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, two common causes of nosocomial infection and pathogens identified by the World Health Organization as priorities for antimicrobial development. High sulfur content polymers were synthesized with different divinyl comonomers and at different sulfur/comonomer ratios, to determine the effect of such variables on the antibacterial properties of the resulting materials. Furthermore, polymers were tested for their potential as antibacterial materials at different temperatures. It was found that the test temperature influenced the antibacterial efficacy of the polymers and could be related to the glass transition temperature of the polymer. These findings provide further understanding of the antibacterial properties of inverse vulcanized polymers and show that such polymers have the potential to be used as antibacterial surfaces.
Collapse
Affiliation(s)
- Romy A Dop
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
4
|
Mendes RM, Francisco AP, Carvalho FA, Dardouri M, Costa B, Bettencourt AF, Costa J, Gonçalves L, Costa F, Ribeiro IAC. Fighting S. aureus catheter-related infections with sophorolipids: Electing an antiadhesive strategy or a release one? Colloids Surf B Biointerfaces 2021; 208:112057. [PMID: 34464911 DOI: 10.1016/j.colsurfb.2021.112057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/31/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Staphylococcus aureus medical devices related-infections, such as blood stream catheter are of major concern. Their prevention is compulsory and strategies, not prone to the development of resistance, to prevent S. aureus biofilms on catheter surfaces (e.g. silicone) are needed. In this work two different approaches using sophorolipids were studied to prevent S. aureus biofilm formation on medical grade silicone: i) an antiadhesive strategy through covalent bond of sophorolipids to the surface; ii) and a release strategy using isolated most active sophorolipids. Sophorolipids produced by Starmerella bombicola, were characterized by UHPLC-MS and RMN, purified by automatic flash chromatography and tested for their antimicrobial activity towards S. aureus. Highest antimicrobial activity was observed for C18:0 and C18:1 diacetylated lactonic sophorolipids showing a MIC of 50 μg mL-1. Surface modification with acidic or lactonic sophorolipids when evaluating the anti-adhesive or release strategy, respectively, was confirmed by contact angle, FTIR-ATR and AFM analysis. When using a mixture of acidic sophorolipids covalently bonded to silicone surface as antiadhesive strategy cytocompatible surfaces were obtained and a reduction of 90 % on biofilm formation was observed. Nevertheless, if a release strategy is adopted with purified lactonic sophorolipids a higher effect is achieved. Most promising compound was C18:1 diacateylated lactonic sophorolipid that showed no cellular viability reduction when a concentration of 1.5 mg mL-1 was selected and a reduction on biofilm around 5 log units. Results reinforce the applicability of these antimicrobial biosurfactants on preventing biofilms and disclose that their antimicrobial effect is imperative when comparing to their antiadhesive properties.
Collapse
Affiliation(s)
- Rita M Mendes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ana P Francisco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Maissa Dardouri
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Bruna Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Lidia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Fabíola Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
5
|
Jingjing E, Rongze M, Zichao C, Caiqing Y, Ruixue W, Qiaoling Z, Zongbai H, Ruiyin S, Junguo W. Improving the freeze-drying survival rate of Lactobacillus plantarum LIP-1 by increasing biofilm formation based on adjusting the composition of buffer salts in medium. Food Chem 2020; 338:128134. [PMID: 33091996 DOI: 10.1016/j.foodchem.2020.128134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 02/01/2023]
Abstract
Lactic acid bacteria can improve their resistance to adverse environments through the formation of biofilm. This study found that adding different buffer salts in culture medium had a great impact on the freeze-drying survival rate of the Lactobacillus plantarum LIP-1, which could be linked to biofilm formation. Transcriptome data showed that potassium ions in buffer salt increased the expression of the luxS gene in the LuxS/autoinducer-2 (AI-2) quorum sensing system and increase synthesis of the quorum sensing signal AI-2. The AI-2 signal molecules up-regulated the cysE gene, which helps to promote biofilm formation. By adding a biofilm inhibitor, d-galactose, and performing a real-time quantitative polymerase chain reaction experiment, we found that d-galactose could down-regulated the luxS and cysE genes, reduced biofilm formation, and decreased the freeze-drying survival rate. The results of this study showed that promoting biofilm formation using appropriate buffer salts may lead to better freeze-drying survival rates.
Collapse
Affiliation(s)
- E Jingjing
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ma Rongze
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Chen Zichao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Yao Caiqing
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Wang Ruixue
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhang Qiaoling
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - He Zongbai
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Sun Ruiyin
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Wang Junguo
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
6
|
Epiphanies of well-known and newly discovered macromolecular carbohydrates – A review. Int J Biol Macromol 2020; 156:51-66. [DOI: 10.1016/j.ijbiomac.2020.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
|