1
|
Wang T, Sun Y, Zeng D, Wang M, Zhang Y, Liu G, Chen X, Liu L. Integrated cell membrane encapsulated PQDs-TK quantum dot nanoclusters with ROS-responsive triggering for efficient and visualized DNA delivery. J Colloid Interface Sci 2025; 683:393-410. [PMID: 39740557 DOI: 10.1016/j.jcis.2024.12.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications. Here, we reported a cell membrane encapsulated PQDs-TK quantum dots nanoclusters (CM-PQDs-TK) gene delivery system with ROS-responsive triggering for efficient and visualized DNA delivery. CM-PQDs-TK possessed excellent DNA loading capacity and protective ability. The particle size and morphology change suggested that CM-PQDs-TK displayed superior ROS responsiveness. As expected, CM-PQDs-TK had an obvious nanocluster structure, and the particle size was stabilized in the range of 200-300 nm. Compared with PQDs and PQDs-TK, HlM-PQDs-TK/DNA encapsulated by Hela cell membrane has higher uptake efficiency and transfection ability, reaching 67.14 % and 63.41 % in 293 T cells, and the DNA transfection efficiency could still reach 43.98 % even in cancer cells (Hela cells). Moreover, flow cytometry and fluorescence microscopy showedthat nanoclusters could effectively enter tumor cells, and the internal DNA could be effectively released. In this process, PQDs-TK responded to high ROS in tumor cells and greatly improved DNA delivery efficiency. After loading DNA, cell membrane encapsulation technology was used to enhance its biocompatibility and targeting further. This work was anticipated to provide an in-depth understanding of the important role of PEI quantum dots in the field of ROS-responsive intelligent gene carriers and laid a foundation for the design and preparation of novel quantum dots gene carriers.
Collapse
Affiliation(s)
- Tiange Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yajing Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Meng R, Li Y, Yang X, Cheng Y, Xu M, Zhou L, Wu C, Yu S, Huang W, Wang T, Zhang Q. Polyphenol Mediated Assembly: Tailored Nano-Dredger Unblocks Axonal Autophagosomes Retrograde Transport Traffic Jam for Accelerated Alzheimer's Waste Clearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413614. [PMID: 39686827 DOI: 10.1002/adma.202413614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Clear-cut evidence has linked defective autophagy to Alzheimer's disease (AD). Recent studies underscore a unique hurdle in AD neuronal autophagy: impaired retrograde axonal transport of autophagosomes, potent enough to induce autophagic stress and neurodegeneration. Nonetheless, pertinent therapy is unavailable. Here, a novel combinational therapy composed of siROCK2 and lithospermic acid B (LA) is introduced, tailored to dredge blocked axonal autophagy by multi-mitigating microtubule disruption, ATP depletion, oxidative stress, and autophagy initiation impediments in AD. Leveraging the recent discovery of multi-interactions between polyphenol LA and siRNA, ε-Poly-L-lysine, and anionic lipid nanovacuoles, LA and siROCK2 are successfully co-loaded into a fresh nano-drug delivery system, LIP@PL-LA/siRC, via a ratio-flexible and straightforward fabrication process. Further modification with the TPL peptide onto LIP@PL-LA/siRC creates a brain-neuron targeted, biocompatible, and pluripotent nanomedicine, named "Nano-dredger" (T-LIP@PL-LA/siRC). Nano-dredger efficiently accelerates axonal retrograde transport and lysosomal degradation of autophagosomes, thereby facilitating the clearance of neurotoxic proteins, improving neuronal complexity, and alleviating memory defects in 3×Tg-AD transgenic mice. This study provides a fresh and flexible polyphenol/siRNA co-delivery paradigm and furnishes conceptual proof that dredging axonal autophagy represents a promising AD therapeutic avenue.
Collapse
Affiliation(s)
- Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yunlong Cheng
- Shanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, P. R. China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - LingLing Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chengqin Wu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Shuai Yu
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Wenyi Huang
- Guangzhou CSR Biotech Co. Ltd, Guangzhou, 510700, P. R. China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
3
|
Liu Y, Zhao C, Song C, Shen X, Wang F, Zhang Y, Ma Y, Ding X. A mussel inspired polyvinyl alcohol/collagen/tannic acid bioadhesive for wet adhesion and hemostasis. Colloids Surf B Biointerfaces 2024; 235:113766. [PMID: 38278032 DOI: 10.1016/j.colsurfb.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Bioadhesives are useful in surgery for hemostasis, tissue sealing and wound healing. However, most bioadhesives have limitations such as weak adhesion in wet conditions, insufficient sealing and poor clotting performance. Inspired by the adhesion mechanism of marine mussels, a novel bioadhesive (PCT) was developed by simply combining polyvinyl alcohol (PVA), collagen (COL) and tannic acid (TA) together. The results showed that the adhesion, sealing and blood coagulation properties boosted with the increase of tannic acid content in PCT. The wet shear adhesion strength of PCT-5 (the weight ratio of PVA:COL:TA=1:1:5) was 60.8 ± 0.6 kPa, the burst pressure was 213.7 ± 0.7 mmHg, and the blood clotting index was 39.3% ± 0.6%, respectively. In rat heart hemostasis tests, PCT-5 stopped bleeding in 23.7 ± 3.2 s and reduced bleeding loss to 83.0 ± 19.1 mg, which outperformed the benchmarks of commercial gauze (53.3 ± 8.7 s and 483.0 ± 15.0 mg) and 3 M adhesive (Type No.1469SB, 35.3 ± 5.0 s and 264.0 ± 14.2 mg). The as-prepared bioadhesive could provide significant benefits for tissue sealing and hemorrhage control along its low cost and facile preparation process.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenyu Zhao
- National Institutes for Food and Drug Control, Beijing 102629 China
| | - Changtong Song
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Shen
- Center of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Fengji Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yisong Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Sun Y, Wang M, Wang M, Liu C, Shi Y, Liu L. The combined plasma membrane coating and cluster bombing strategy for improved tumor-targeting gene delivery of silicon nanoclusters. Colloids Surf B Biointerfaces 2023; 231:113578. [PMID: 37804597 DOI: 10.1016/j.colsurfb.2023.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
With the promising biosafety and favorable cell imaging efficiency, silicon quantum dots (SiQDs) was broadly exploited as non-viral gene carriers in recent years. However, the low transfection efficiency and weak targeting ability hindered its further clinical applications. In this study, the combined plasma membrane coating and cluster bombing strategy was adopted to enhance the gene delivery potential of silicon quantum dots nanoclusters (SiNC). Initially, SiNC was generated via 3, 3'-Dithiodipropionic acid (DipA) crosslinking of SiQDs, then the obtained nanoclusters were coated by distinct plasma membrane. Interestingly, cell membrane coated SiNC (CM-SiNC) underwent particle size change, the typical character of "cluster bombing", when exposed to high GSH concentration, which was observed in the tumor microenvironment. Meanwhile, CM-SiNC can be efficiently uptaken by HEK 293T and HeLa cells, therefore transferring DNA into those cells. More importantly, among the particles coated by HeLa (HeLa-M), Red Blood (RBC-M) or RAW267.4 (RAW-M) cell membrane, HeLa cell membrane coating exhibited better cellular uptake and transfection efficiency in HeLa cells, which suggested the encouraging tumor targeting ability. In sum, these data suggested that cluster bombing of SiNC could be beneficial for physical stability and biodistribution, the additional plasma membrane coating further endowed SiNC the efficient gene delivery and tumor targeting ability. Therefore, CM-SiNC had the potential as a gene delivery vector and its application should be further addressed in vivo.
Collapse
Affiliation(s)
- Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengying Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Qu Y, De Rose R, Kim C, Zhou J, Lin Z, Ju Y, Bhangu SK, Cortez‐Jugo C, Cavalieri F, Caruso F. Supramolecular Polyphenol-DNA Microparticles for In Vivo Adjuvant and Antigen Co-Delivery and Immune Stimulation. Angew Chem Int Ed Engl 2023; 62:e202214935. [PMID: 36700351 PMCID: PMC10946467 DOI: 10.1002/anie.202214935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.
Collapse
Affiliation(s)
- Yijiao Qu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Robert De Rose
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Chan‐Jin Kim
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jiajing Zhou
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Zhixing Lin
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Yi Ju
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Sukhvir Kaur Bhangu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Christina Cortez‐Jugo
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie Chimiche Universita' di Roma “Tor Vergata”Via della Ricerca Scientifica 100133RomeItaly
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
7
|
Sarker P, Nalband DM, Freytes DO, Rojas OJ, Khan SA. High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels. Biomacromolecules 2022; 23:4696-4708. [PMID: 36198084 DOI: 10.1021/acs.biomac.2c00916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable collagen-based hydrogels offer great promise for tissue engineering and regeneration, but their use is limited by poor mechanical strength. Herein, we incorporate tannic acid (TA) to tailor the rheology of the corresponding hydrogels while simultaneously adding the therapeutic benefits inherent to this polyphenolic component. TA in the solution form and needle-shaped TA microparticles are combined with collagen and the respective systems studied for their time-dependent sol-gel transitions (from storage to body temperatures, 4-37 °C) as a function of TA concentration. Compared to systems incorporating TA microparticles, those with dissolved TA, applied at a similar concentration, generate a less significant enhancement of the elastic modulus. Premature gelation at a low temperature and associated colloidal arrest of the system are proposed as a main factor explaining this limited performance. A higher yield stress (elastic stress method) is determined for systems loaded with TA microparticles compared to the system with dissolved TA. These results are interpreted in terms of the underlying interactions of TA with collagen, as probed by spectroscopy and isothermal titration calorimetry. Importantly, hydrogels containing TA microparticles show high cell viability (human dermal fibroblasts) and comparative cellular activity relative to the collagen-only hydrogel. Overall, composite hydrogels incorporating TA microparticles demonstrate a new, simple, and better-performance alternative to cell culturing and difficult implantation scenarios.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Liu L, Yang Z, Liu C, Wang M, Chen X. Preparation of PEI-modified nanoparticles by dopamine self-polymerization for efficient DNA delivery. Biotechnol Appl Biochem 2022; 70:824-834. [PMID: 36070708 DOI: 10.1002/bab.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Achieving efficient and safe gene delivery is great of significance to promote the development of gene therapy. In this work, a polydopamine (PDA) layer was coated on the surface of Fe3 O4 nanoparticles (NPs) by dopamine (DA) self-polymerization, and then magnetic Fe3 O4 NPs were prepared by the Michael addition between amino groups in polyethyleneimine (PEI) and PDA. The prepared Fe3 O4 NPs (named Fe3 O4 @PDA@PEI) were characterized by FTIR, atomic force microscopy (AFM) and scanning electron microscope (SEM). As an efficient and safe gene carrier, the potential of Fe3 O4 @PDA@PEI was evaluated by agarose gel electrophoresis, MTT assay, fluorescence microscopy, flow cytometry. The results shows that the Fe3 O4 @PDA@PEI NPs is stable hydrophilic nanoparticles with a particle size of 50-150 nm. It can efficiently condense DNA at low N/P ratios and protect it from nuclease degradation. In addition, the Fe3 O4 @PDA@PEI NPs has higher safety than PEI. Further, the Fe3 O4 @PDA@PEI/DNA polyplexes could be effectively absorbed by cells and successfully transfected, and exhibit higher cellular uptake and gene transfection efficiency than PEI/DNA polyplexes. The findings indicate that the Fe3 O4 @PDA@PEI NPs has the potential to be developed into a novel gene vector. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liang Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhaojun Yang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaobing Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mengying Wang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Chen
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
9
|
Liu L, Yang Z, Liu C, Wang M, Chen Y. Effect of molecular weight of polysaccharide on efficient plasmid
DNA
delivery by
polyethylenimine‐polysaccharide‐Fe
(
III
) complexes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liang Liu
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Zhaojun Yang
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Chaobing Liu
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Mengying Wang
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Yiran Chen
- School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| |
Collapse
|
10
|
Chen Y, Liu C, Yang Z, Sun Y, Chen X, Liu L. Fabrication of zein-based hydrophilic nanoparticles for efficient gene delivery by layer-by-layer assembly. Int J Biol Macromol 2022; 217:381-397. [PMID: 35839955 DOI: 10.1016/j.ijbiomac.2022.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
As a natural biological macromolecule, zein has broad application prospects in drug delivery due to its unique self-assembly properties. In this work, zein/sodium alginate (Zein/SA) nanocomposites were prepared by a pH-cycle method, Then Zein/SA/PEI (ZSP) nanocomposites were prepared by efficient layer-by-layer assembly method, ZSP nanocomposite of higher transfection performance was further labeled by folic acid (FA). After characterizing the physicochemical properties of ZSP by various methods, the potential of ZSP as a gene delivery vehicle was explored in vitro. The results showed that ZSP had good dispersibility and stability, the diameter distribution was in the range of 124-203 nm, and it had a typical core-shell structure, which could effectively condensate DNA and protect it from nuclease hydrolysis. ZSP exhibited proton buffering capacity similar to PEI, lower cellular toxicity, lower protein adsorption and erythrocyte hemolysis effect than PEI. ZSP/pDNA complexes could be taken up by cells and exhibited higher transfection efficiency than PEI/DNA complexes at the same weight ratio. The transfection efficiency of the complex in HeLa and 293T cells can be improved by FA labeling, especially in HeLa cells. These results provide new perspective for the design and development of efficient zein-based gene delivery systems.
Collapse
Affiliation(s)
- Yiran Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chaobing Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhaojun Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanlin Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
11
|
Huang Z, Xiao YP, Guo Y, Yang HZ, Zhao RM, Zhang J, Yu XQ. A cyclen-based fluoropolymer as a versatile vector for gene and protein delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tarakanchikova YV, Linnik DS, Mashel T, Muslimov AR, Pavlov S, Lepik KV, Zyuzin MV, Sukhorukov GB, Timin AS. Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112161. [PMID: 34082966 DOI: 10.1016/j.msec.2021.112161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nowadays, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapy due to its low toxicity and immunogenicity, sufficient packaging capacity, targeting, and straightforward, low-cost, large-scale good manufacturing practice (GMP) production. A number of research works focusing on multilayer structures have explored different factors and parameters that can affect the delivery efficiency of pDNA. However, there are no systematic studies on the performance of these structures for enhanced gene delivery regarding the gene loading methods, the use of additional organic components and cell/particle incubation conditions. Here, we conducted a detailed analysis of different parameters such as (i) strategy for loading pDNA into carriers, (ii) incorporating both pDNA and organic additives within one carrier and (iii) variation of cell/particle incubation conditions, to evaluate their influence on the efficiency of pDNA delivery with multilayer structures consisting of inorganic cores and polymer layers. Our results reveal that an appropriate combination of all these parameters leads to the development of optimized protocols for high transfection efficiency, compared to the non-optimized process (> 70% vs. < 7%), and shows a good safety profile. In conclusion, we provide the proof-of-principle that these multilayer structures with the developed parameters are a promising non-viral platform for an efficient delivery of nucleic acids.
Collapse
Affiliation(s)
- Yana V Tarakanchikova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii S Linnik
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Tatiana Mashel
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Department of Applied Optics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Sergey Pavlov
- Ioffe Institute, Politekhnicheskaya Ulitsa, 26, 194021 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russian Federation; School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom.
| | - Alexander S Timin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.
| |
Collapse
|
13
|
A. Youness R, Kamel R, A. Elkasabgy N, Shao P, A. Farag M. Recent Advances in Tannic Acid (Gallotannin) Anticancer Activities and Drug Delivery Systems for Efficacy Improvement; A Comprehensive Review. Molecules 2021; 26:1486. [PMID: 33803294 PMCID: PMC7967207 DOI: 10.3390/molecules26051486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Tannic acid is a chief gallo-tannin belonging to the hydrolysable tannins extracted from gall nuts and other plant sources. A myriad of pharmaceutical and biological applications in the medical field has been well recognized to tannic acid. Among these effects, potential anticancer activities against several solid malignancies such as liver, breast, lung, pancreatic, colorectal and ovarian cancers have been reported. Tannic acid was found to play a maestro-role in tuning several oncological signaling pathways including JAK/STAT, RAS/RAF/mTOR, TGF-β1/TGF-β1R axis, VEGF/VEGFR and CXCL12/CXCR4 axes. The combinational beneficial effects of tannic acid with other conventional chemotherapeutic drugs have been clearly demonstrated in literature such as a synergistic anticancer effect and enhancement of the chemo-sensitivity in several resistant cases. Yet, clinical applications of tannic acid have been limited owing to its poor lipid solubility, low bioavailability, off-taste, and short half-life. To overcome such obstacles, novel drug delivery systems have been employed to deliver tannic acid with the aim of improving its applications and/or efficacy against cancer cells. Among these drug delivery systems are several types of organic and metallic nanoparticles. In this review, the authors focus on the molecular mechanisms of tannic acid in tuning several neoplastic diseases as well as novel drug delivery systems that can be used for its clinical applications with an attempt to provide a systemic reference to promote the development of tannic acid as a cheap drug and/or drug delivery system in cancer management.
Collapse
Affiliation(s)
- Rana A. Youness
- The Molecular Genetics Research Team, Department of Pharmaceutical Biology, Faculty of Pharmacy andBiotechnology, German University in Cairo, Cairo 12622, Egypt;
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|