1
|
Huang D, Li Z. Multidimensional immunotherapy for dry eye disease: current status and future directions. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1449283. [PMID: 39554604 PMCID: PMC11564177 DOI: 10.3389/fopht.2024.1449283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Dry Eye Disease (DED) is a multifactorial condition driven by tear film hyperosmolarity, immune dysregulation, and neuro-immune interactions. The immune system plays a central role in its pathogenesis, influencing both inflammation and ocular surface damage. While traditional immunotherapies like anti-inflammatory agents and immunosuppressants offer symptom relief, their long-term use is limited by side effects. This review focuses on emerging immunotherapies, including biologics, stem cell therapy, gene therapy, nanotechnology, and exosome-based treatments, all of which hold promise in modulating immune responses and promoting tissue repair. The relationship between the ocular microbiome and DED is also explored, with an emphasis on personalized immunotherapy. Key challenges for future research include identifying novel therapeutic targets, optimizing clinical translation, and evaluating the long-term efficacy of these innovative treatments.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Department of Ophthalmology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Stolowich N, Vittitow J, Kissling R, Borchman D. Oxygen-Carrying Capacity of Perfluorohexyloctane, a Novel Eye Drop for Dry Eye Disease. CURRENT THERAPEUTIC RESEARCH 2023; 98:100705. [PMID: 37397833 PMCID: PMC10313907 DOI: 10.1016/j.curtheres.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 07/04/2023]
Abstract
Objective One-hundred percent perfluorohexyloctane (PFHO) is a water-free, preservative-free eye drop approved by the Food and Drug Administration in the United States for the treatment of dry eye disease. PFHO has shown relief of dry eye signs and symptoms in clinical trials and has potent antievaporative action in vitro. The objective of this study was to measure the level of oxygen in PFHO. Methods T1 relaxation times (time taken for proton spins to translate from a random alignment to an alignment with the main magnetic field) for fluorine-19 in perfluorohexyloctane were measured using fluorine-19 nuclear magnetic resonance spectroscopy. The level of oxygen was interpolated from published data. Results The hydrogen-1 and fluorine-19 nuclear magnetic resonance spectra of PFHO were well resolved and the resonance assignments and intensities were as expected. The T1 values calculated for the CF3 group resonance in the current study was 0.901 seconds and 1.12 seconds at 25 °C and 37 °C, respectively. The T1 values for the CF2 group resonances increased by 17% to 24% with an increase in temperature from 25 °C to 37 °C. The mean (SD) partial pressure of oxygen in PFHO was calculated to be 257 (36) mm Hg and 270 (38) mm Hg at 25 °C and 37 °C, respectively. Conclusions The current study confirms that PFHO contains a significant amount of oxygen, more so than that calculated for tears in equilibrium with air. Once instilled on the eye, PFHO is not expected to be a barrier to the oxygen necessary for a healthy cornea and may in fact deliver nonreactive oxygen to the cornea to facilitate healing in patients with dry eye disease.
Collapse
Affiliation(s)
- Neal Stolowich
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Jason Vittitow
- Clinical Affairs, Bausch + Lomb, Bridgewater, New Jersey
| | | | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
3
|
Vittitow J, Kissling R, DeCory H, Borchman D. In Vitro Inhibition of Evaporation with Perfluorohexyloctane, an Eye Drop for Dry Eye Disease. CURRENT THERAPEUTIC RESEARCH 2023; 98:100704. [PMID: 37389230 PMCID: PMC10300294 DOI: 10.1016/j.curtheres.2023.100704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 07/01/2023]
Abstract
Objective Perfluorohexyloctane (PFHO) MIEBOTM, formerly (NOV03) is a single component, water-free eye drop approved by the Food and Drug Administration in the United States for the treatment of dry eye disease. We evaluated the in vitro inhibitory effect of PFHO on the evaporation rate (Revap) of saline. Methods Evaporation rates were measured gravimetrically at 25°C or 35°C. The evaporation rate (Revap) of phosphate-buffered saline (PBS) was measured following the application of 11-200 µL PFHO or 100 µL artificial tears (Soothe XP [Bausch + Lomb, Bridgewater, New Jersey], Systane Balance [Alcon, Fort Worth, Texas], and Systane Ultra [Alcon]). The effect of PFHO on the Revap of PBS was further evaluated following the addition of 50 mg/mL mucin to PBS and compared with that of meibum lipid collected from a 68 year-old White volunteer. Results At 25°C the mean (SEM) Revap of PBS alone or PFHO alone was 4.06 (0.06) and 0.137 (0.004) µm/min, respectively. Layering 100 µL PFHO over PBS inhibited the Revap of PBS by 81% (P < 0.0001), whereas artificial tears had no effect. The presence of mucin attenuated the inhibition of the Revap of PBS by PFHO by 17% (P < 0.0001). At 35°C, the Revap of PBS was inhibited by 88% when layering 100 µL PFHO over PBS and 28% when applying a single 11 µL drop of PFHO (P value < 0.0001 for both). Meibum lipid inhibited the Revap of PBS by 8% at this temperature, whereas the combination of a drop of PFHO plus meibum inhibited the Revap of PBS by 34%. Conclusions PFHO significantly inhibited the Revap of saline in this in vitro model. The data support the idea that PHFO may form an antievaporative layer on the tear film surface and may be a functional substitute for the native tear-film lipid layer in patients with dry eye disease.
Collapse
Affiliation(s)
- Jason Vittitow
- Clinical Affairs, Bausch + Lomb, Bridgewater, New Jersey
| | | | - Heleen DeCory
- Medical Affairs, Bausch + Lomb, Bridgewater, New Jersey
| | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
4
|
Agarwal P, Korward J, Krösser S, Rupenthal ID. Preclinical characterization of water-free cyclosporine eye drops - factors impacting ocular penetration ex vivo and in vivo. Eur J Pharm Biopharm 2023:S0939-6411(23)00119-4. [PMID: 37178940 DOI: 10.1016/j.ejpb.2023.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Although the efficacy of Cyclosporine A (CsA) in the management of ocular inflammation is well-demonstrated, ocular delivery remains challenging due to its hydrophobic nature. The semifluorinated alkane, perfluorobutylpentane (F4H5) has previously been suggested as an efficient vehicle for preparation of CsA eyedrops. Here we evaluated the influence of drop volume and the formulation aid, ethanol (EtOH), on ocular penetration of CsA and compared it to that of the commercial eyedrop, Ikervis, ex vivo and in vivo. Moreover, conjunctival and corneal tolerability after EtOH addition were evaluated ex vivo. The F4H5/EtOH vehicle was well tolerated and resulted in better corneal CsA penetration (AUC(0 - 4h): 63,008 ± 3,946 ng.h.g-1) than Ikervis (AUC(0 - 4h): 10,328 ± 1,462 ng.h.g-1) or F4H5 alone (AUC(0 - 4h): 50,734 ± 3,472 ng.h.g-1) ex vivo. Interestingly, in vivo the CsA concentration in cornea, conjunctiva and lacrimal glands observed after administration of the F4H5 formulation (AUC(0.133-24 h): 7,741 ± 1,334 ng.h.g-1, 1,313 ± 291 ng.h.g-1, 48.2 ± 26.3 ng.h.g-1) and F4H5/EtOH both at a reduced dose of 11 µl (AUC(0.133-24 h): 9,552 ± 1,738 ng.h.g-1, 1,679 ± 285 ng.h.g-1, 50.3 ± 21.1 ng.h.g-1) was similar or even greater than what was observed on administration of 50 µl Ikervis (AUC(0.133-24 h): 9,943 ± 1,413 ng.h.g-1, 2,069 ± 263 ng.h.g-1, 30.6 ± 18.4 ng.h.g-1). Thus, F4H5-based eyedrops were shown to deliver CsA more efficiently to anterior ocular tissues at a reduced dose in comparison to Ikervis, reducing dose wastage and minimizing any potential systemic side effects.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | | | | | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
5
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
6
|
Delicado-Miralles M, Velasco E, Díaz-Tahoces A, Gallar J, Acosta MC, Aracil-Marco A. Deciphering the Action of Perfluorohexyloctane Eye Drops to Reduce Ocular Discomfort and Pain. Front Med (Lausanne) 2021; 8:709712. [PMID: 34765614 PMCID: PMC8577568 DOI: 10.3389/fmed.2021.709712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Perfluorohexyloctane (F6H8) eyedrops have been recently introduced in Europe as a product to treat dry eye disease, based on its ability to reduce tear film instability in Meibomian gland dysfunction and evaporative dry eye disease, although its mechanism of action is still unknown. In the present pilot study, we evaluated the effects of the ocular instillation of a single drop of commercial F6H8 eyedrops in 20 healthy humans (9 women/11 men), measuring: (a) Corneal surface temperature (CST) from infrared video images; (b) tear volume using phenol red threads; (c) blinking frequency; and (d) ocular surface sensations (cold, dryness, pricking, foreign body, burning, itching, gritty, eye fatigue, watering eyes, and light-evoked discomfort sensations; scored using 10 cm Visual Analog Scales), before and 5–60 min after F6H8 or saline treatment. CST decreased and tearing and blinking frequency increased significantly after F6H8 but not after saline solution. When applied unilaterally, CST decreased only in the F6H8-treated eye. No sensations were evoked after F6H8 or saline. The corneal surface temperature reduction produced by topical F6H8 does not evoke conscious ocular sensations but is sufficient to increase the activity of corneal cold thermoreceptors, leading to an increased reflex lacrimation and blinking that may relieve dry eye condition thus reducing ocular discomfort and pain.
Collapse
Affiliation(s)
- Miguel Delicado-Miralles
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain
| | - Enrique Velasco
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.,The European University of Brain and Technology-NeurotechEU, San Juan de Alicante, Spain
| | - Ariadna Díaz-Tahoces
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juana Gallar
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.,The European University of Brain and Technology-NeurotechEU, San Juan de Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - M Carmen Acosta
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.,The European University of Brain and Technology-NeurotechEU, San Juan de Alicante, Spain
| | - Adolfo Aracil-Marco
- Cellular and Systems Neurobiology Unit, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain
| |
Collapse
|
7
|
Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
Collapse
|
8
|
Przykaza K, Jurak M, Wiącek A, Mroczka R. Characteristics of hybrid chitosan/phospholipid-sterol, peptide coatings on plasma activated PEEK polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111658. [DOI: 10.1016/j.msec.2020.111658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 01/24/2023]
|