1
|
Azuaje-Hualde E, Komen J, Alonso-Cabrera JA, van den Berg A, de Pancorbo MM, van der Meer AD, Benito-Lopez F, Basabe-Desmonts L. Cell Patterning Technology on Polymethyl Methacrylate through Controlled Physicochemical and Biochemical Functionalization. BIOSENSORS 2023; 13:904. [PMID: 37887097 PMCID: PMC10604931 DOI: 10.3390/bios13100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
In recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial production, and their preparation requires several chemical coating steps, resulting in cumbersome protocols. We have developed a simplified two-step method for generating controlled cell patterns on PMMA, a durable and transparent material frequently employed in the mass manufacturing of microfluidic devices. It involves air plasma and microcontact printing. This approach allows the formation of well-defined cell arrays on PMMA without the need for blocking agents to define the patterns. Patterns of various adherent cell types in dozens of individual cell cultures, allowing the regulation of cell-material and cell-cell interactions, were developed. These cell patterns were integrated into a microfluidic device, and their viability for more than 20 h under controlled flow conditions was demonstrated. This work demonstrated the potential to adapt polymeric cytophobic materials to simple fabrication protocols of cell-based microsystems, leveraging the possibilities for commercialization.
Collapse
Affiliation(s)
- Enrique Azuaje-Hualde
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (E.A.-H.); (J.A.A.-C.)
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Job Komen
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (J.K.); (A.v.d.B.)
| | - Juncal A. Alonso-Cabrera
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (E.A.-H.); (J.A.A.-C.)
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Albert van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (J.K.); (A.v.d.B.)
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | - Fernando Benito-Lopez
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, 01009 Vitoria-Gasteiz, Spain
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (E.A.-H.); (J.A.A.-C.)
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, 01009 Vitoria-Gasteiz, Spain
- Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Kourti D, Kanioura A, Manouras T, Vamvakaki M, Argitis P, Chatzichristidi M, Kakabakos S, Petrou P. Photolithographically Patterned Cell-Repellent PEG-b-PTHPMA Diblock Copolymer for Guided Cell Adhesion and Growth. Macromol Biosci 2023; 23:e2200301. [PMID: 36189866 DOI: 10.1002/mabi.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Indexed: 01/19/2023]
Abstract
Surfaces for guided cell adhesion and growth are indispensable in several diagnostic and therapeutic applications. Towards this direction, four diblock copolymers comprising polyethylene glycol (PEG) and poly(2-tetrahydropyranyl methacrylate) (PTHPMA) are synthesized employing PEG macroinitiators of different chain lengths. The copolymer with a 5000 Da PEG block and a PEG-PTHPMA comonomers weight ratio of 43-57 provides a film with the highest stability in the culture medium and the strongest cell repellent properties. This copolymer is used to develop a positive photolithographic material and create stripe patterns onto silicon substrates. The highest selectivity regarding smooth muscle cell adhesion and growth and the highest fidelity of adhered cells for up to 3 days in culture is achieved for stripe patterns with widths between 25 and 27.5 µm. Smooth muscle cells cultured on such patterned substrates exhibit a decrease in their proliferation rate and nucleus area and an increase in their major axis length, compared to the cells cultured onto non-patterned substrates. These alterations are indicative of the adoption of a contractile rather than a synthetic phenotype of the smooth muscle cells grown onto the patterned substrates and demonstrate the potential of the novel photolithographic material and patterning method for guided cell adhesion and growth.
Collapse
Affiliation(s)
- Dimitra Kourti
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece.,Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Greece
| | - Anastasia Kanioura
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Theodore Manouras
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, 70013, Greece.,Greece and Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, Heraklion, Crete, 70013, Greece.,Greece and Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Panagiotis Argitis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | | | - Sotirios Kakabakos
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Panagiota Petrou
- Immunoassays-Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| |
Collapse
|
3
|
Zhang Y, Li Y, Tan Z. A review of enrichment methods for circulating tumor cells: from single modality to hybrid modality. Analyst 2021; 146:7048-7069. [PMID: 34709247 DOI: 10.1039/d1an01422f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cell (CTC) analysis as a liquid biopsy can be used for early diagnosis of cancer, evaluating cancer progression, and assessing treatment efficacy. The enrichment of CTCs from patient blood is important for CTC analysis due to the extreme rarity of CTCs. This paper updates recent advances in CTC enrichment methods. We first review single-modality methods, including biophysical and biochemical methods. Hybrid-modality methods, combining at least two single-modality methods, are gaining increasing popularity for their improved performance. Then this paper reviews hybrid-modality methods, which are categorized into integrated and sequenced hybrid-modality methods. The state of the art indicates that the CTC capture efficiencies of integrated hybrid-modality methods can reach 85% or higher by taking advantage of the superimposed and enhanced capture effects from multiple single-modality methods. Moreover, a hybrid method integrating biophysical with biochemical methods is characterized by both high processing rate and high specificity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Yifu Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
4
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
5
|
Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, Chatzichristidi M, Kakabakos S. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|