1
|
Bayrami A, Sojoudi M, Rahim Pouran S, Habibi-Yangjeh A, Sojoudi S. Linum usitatissimum Delivery over Chitosan Nanobiopolymer: Enhanced Effects on Polycystic Ovary Syndrome Condition. IET Nanobiotechnol 2024; 2024:6693566. [PMID: 39050969 PMCID: PMC11268972 DOI: 10.1049/2024/6693566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Herein, chitosan nanoparticle (CHIT) was used as a safe and biocompatible matrix to carry flaxseed (Linum usitatissimum L.) extract (FSE). The number of main features and bio-interface properties of CHIT-FSE were determined by SEM, DLS, FTIR, XRD, TGA, and zeta potential analyses and compared to those of chitosan lacking FSE. A GC-MS analysis was also conducted to reveal the bioactive compounds of FSE. The active anchoring of the FSE phytomolecules over chitosan nanoparticles with enhanced thermal and structural stability was correspondingly verified. Subsequently, the influence of CHIT-FSE, CHIT-TPP, and FSE supplementation was assessed on hormonal and biochemical markers of polycystic ovary syndrome (PCOS) in female rats and compared with untreated and healthy control groups. After 16 days of treatment, CHIT-FSE represented the best performance for controlling the serum levels of the studied biochemical (lipid profile and blood glucose level) and hormonal (insulin, testosterone, luteinizing, and follicle-stimulating hormone) parameters. Considering the negligible therapeutic activity of CHIT-TPP, the enhanced activity of CHIT-FSE compared to only FSE was expounded based on the potent action of chitosan nanoparticles in enhanced stabilization, bioavailability, transport, and permeability of the therapeutically important phytomolecules. As per the results of this investigation, supporting medically important biomolecules over chitosan can enhance their therapeutic effectiveness in controlling PCOS.
Collapse
Affiliation(s)
- Abolfazl Bayrami
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Maryam Sojoudi
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Shima Rahim Pouran
- Department of Environmental and Occupational HealthSocial Determinants of Health Research CentreArdabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of ChemistryFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| | - Sanaz Sojoudi
- Department of BiologyFaculty of ScienceUniversity of Mohaghegh Ardabili, Ardabil P.O. Box 179, Iran
| |
Collapse
|
2
|
Arvanagh FM, Masoumabad AB, Yangjeh AH, Bayrami M, Feizpoor S, Nourani MR, Taheri RA. Anti-inflammatory and collagenation effects of zinc oxide-based nanocomposites biosynthesised with Mentha longifolia leaf extract. J Wound Care 2023; 32:44-54. [PMID: 36630114 DOI: 10.12968/jowc.2023.32.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The integration of nanomaterials and herbal medicine has led to the design of new nanocomposites, which are therapeutically more effective. The purpose of this study was to prepare different zinc oxide (ZnO)-based nanoparticles (NPs) via Mentha longifolia extract based on gauze linen fibre and study its effects on wound healing. METHODS The textural properties, morphology, thermal stability, purity, spectroscopic and phase structure of nanoparticles were investigated. Subsequently, male Wistar rats were subjected to wounds in six different treatment groups: Group I: control; group II: ZnO/W prepared in water (W); group III: ZnO/M synthesised with Mentha longifolia (M) extract; group IV: ZnO/copper(II) oxide (CuO)/M nanocomposite synthesised with M extract; group IV: treated with ZnO/silver (Ag)/M nanocomposite; group V: treated with ZnO/Ag/M nanocomposite; and finally, group VI: treated with ZnO/CuO/Ag/M nanocomposite. In all groups, the wounds were treated for 21 days with prepared samples. Every seven days, after measuring the decreasing rate of the wound size, tissue samples from each group were taken for histopathological analysis. The prepared tissue sections were assessed by haematoxylin and eosin staining for the formation of the epidermis, dermis and muscular tissue, and Masson's Trichrome staining for the formation of collagen fibres. RESULTS The results showed that the ZnO/CuO/Ag/M nanocomposite was a significantly more effective wound healing material in comparison with other samples (p<0.05). CONCLUSION In this study, the integration of ZnO/CuO/Ag nanocomposites with secondary metabolites of Mentha longifolia gave rise to a superior combination, which could support different phases of wound healing via the regulation of cytokines and growth factors in the course of healing.
Collapse
Affiliation(s)
| | | | - Aziz Habibi Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahdi Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Parvathiraja C, Shailajha S. High-performance visible light photocatalyst antibacterial applications of ZnO and plasmonic-decorated ZnO nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Antiproliferative activity of zinc oxide-silver nanocomposite interlinked with Vaccinium arctostaphylos L. fruit extract against cancer cells and bacteria. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
6
|
Bayrami A, Shirdel A, Rahim Pouran S, Mahmoudi F, Habibi-Yangjeh A, Singh R, Abdul Raman AA. Co-regulative effects of chitosan-fennel seed extract system on the hormonal and biochemical factors involved in the polycystic ovarian syndrome. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111351. [PMID: 32919695 DOI: 10.1016/j.msec.2020.111351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 01/16/2023]
Abstract
There is a renewed interest in the application of chitosan-based drug delivery systems over the last few years. In this study, the ionic gelation method was used to prepare chitosan-engaged tripolyphosphate ions, as the cross-linking molecule, (Chit-TPP) and concurrent loading of the biomolecules of the ethanolic extract of fennel, Foeniculum vulgare, seed (FEC@NBC). The samples were characterized by SEM, DLS, TGA, FTIR, XRD, GC-MS, and zeta potential, and their effects on the related hormonal and biochemical factors of the rats with polycystic ovarian syndrome (PCOS) were assessed. The estradiol valerate-induced PCOS in female rats was confirmed by vaginal smear test and subsequent histological screening. The PCOS-induced rats were treated by fennel seed extract (FSX), Chit-TPP, and FEC@NBC. The process of treatment was monitored by measuring the serum levels of testosterone, luteinizing hormone, follicle-stimulating hormone, insulin, glucose, high-density lipoprotein cholesterol, total cholesterol, and total triglyceride after 16 days of treatment and compared with healthy control and untreated PCOS-control groups. The FEC@NBC administration contributed to the remarkable hormonal, glucose, and lipid profile regulation in the rats with PCOS. The significance of FEC@NBC performance in dealing with PCOS complications compared to that of the only extract could be resulted from the effective targeted delivery and stability of phytomolecules when encapsulated in Chit-TPP.
Collapse
Affiliation(s)
- Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran..
| | - Arezoo Shirdel
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Shima Rahim Pouran
- Centre of Advanced Manufacturing and Materials Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Environmental and Occupational Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Fariba Mahmoudi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran..
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Ramesh Singh
- Centre of Advanced Manufacturing and Materials Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Tunku Highway, Gadong BE1410, Brunei Darussalam.
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|