1
|
Liu G, Wang J, Wang J, Cui X, Wang K, Chen M, Yang Z, Gao A, Shen Y, Zhang Q, Gao G, Cui D. Deep-learning assisted zwitterionic magnetic immunochromatographic assays for multiplex diagnosis of biomarkers. Talanta 2024; 273:125868. [PMID: 38458085 DOI: 10.1016/j.talanta.2024.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.
Collapse
Affiliation(s)
- Guan Liu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Junhao Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Jiulin Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Xinyuan Cui
- Radiology Department of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, PR China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Mingrui Chen
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ziyang Yang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Yulan Shen
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, PR China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China; National Engineering Research Center for Nanotechnology, Shanghai, 200241, PR China; Henan Medical School, Henan University, Henan, 475004, PR China.
| |
Collapse
|
2
|
Ren H, Wang P, Huang H, Huang J, Lu Y, Wu Y, Xie Z, Tang Y, Cai Z, Shen H. N-Halaminated spermidine-containing polymeric coating enables titanium to achieve dual functions of antibacterial and osseointegration. Biomater Sci 2024; 12:2648-2659. [PMID: 38573023 DOI: 10.1039/d4bm00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous N-halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration. The as-obtained Ti-SPD-Cl contains abundant N-Cl groups and demonstrates effective antibacterial ability against S. aureus and E. coli. Meanwhile, due to the presence of the spermidine component and construction of a porous hydrophilic surface, Ti-SPD-Cl is also beneficial for maintaining cell membrane homeostasis and promoting cell adhesion, exhibiting good biocompatibility and osteogenic ability. The rat osteomyelitis model demonstrates that Ti-SPD-Cl can effectively suppress bacterial infection and enhance bone-implant integration. Thus, Ti-SPD-Cl shows promising clinical applicability in the prevention of orthopedic implant infections and poor osseointegration.
Collapse
Affiliation(s)
- Hang Ren
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Peng Wang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Hanwen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Junshen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yuheng Lu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yanfeng Wu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhongyu Xie
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Youchen Tang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Huiyong Shen
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| |
Collapse
|
3
|
Wang Y, Yin M, Ma Z, Wang Y, Li W, Hu H, Hong X. High antimicrobial and Rhodamine B absorption properties of N-halamine modified mesoporous silica via a thiol-ene ‘click’ reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|