1
|
Dimitrov E, Toncheva-Moncheva N, Bakardzhiev P, Forys A, Doumanov J, Mladenova K, Petrova S, Trzebicka B, Rangelov S. Original Synthesis of a Nucleolipid for Preparation of Vesicular Spherical Nucleic Acids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3645. [PMID: 36296836 PMCID: PMC9609631 DOI: 10.3390/nano12203645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Spherical nucleic acids (SNAs)-nanostructures, consisting of a nanoparticle core densely functionalized with a shell of short oligonucleotide strands-are a rapidly emerging class of nanoparticle-based therapeutics with unique properties and specific applications as drug and nucleic acid delivery and gene regulation materials. In this contribution, we report on the preparation of hollow SNA nanoconstructs by co-assembly of an originally synthesized nucleolipid-a hybrid biomacromolecule, composed of a lipidic residue, covalently linked to a DNA oligonucleotide strand-with other lipids. The nucleolipid was synthesized via a click chemistry approach employing initiator-free, UV light-induced thiol-ene coupling of appropriately functionalized intermediates, performed in mild conditions using a custom-made UV light-emitting device. The SNA nanoconstructs were of a vesicular structure consisting of a self-closed bilayer membrane in which the nucleolipid was intercalated via its lipid-mimetic residue. They were in the lower nanometer size range, moderately negatively charged, and were found to carry thousands of oligonucleotide strands per particle, corresponding to a grafting density comparable to that of other SNA structures. The surface density of the strands on the bilayer implied that they adopted an unextended conformation. We demonstrated that preformed vesicular structures could be successfully loaded with either hydrophilic or hydrophobic dyes.
Collapse
Affiliation(s)
- Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Pavel Bakardzhiev
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov Blvd. 8, 1164 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov Blvd. 8, 1164 Sofia, Bulgaria
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tsankov Blvd. 8, 1164 Sofia, Bulgaria
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Videv P, Mladenova K, Andreeva TD, Park JH, Moskova-Doumanova V, Petrova SD, Doumanov JA. Cholesterol Alters the Phase Separation in Model Membranes Containing hBest1. Molecules 2022; 27:molecules27134267. [PMID: 35807512 PMCID: PMC9268032 DOI: 10.3390/molecules27134267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human retinal pigment epithelial (RPE) cells express the transmembrane Ca2+-dependent Cl− channel bestrophin-1 (hBest1) of the plasma membrane. Mutations in the hBest1 protein are associated with the development of distinct pathological conditions known as bestrophinopathies. The interactions between hBest1 and plasma membrane lipids (cholesterol (Chol), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and sphingomyelin (SM)) determine its lateral organization and surface dynamics, i.e., their miscibility or phase separation. Using the surface pressure/mean molecular area (π/A) isotherms, hysteresis and compressibility moduli (Cs−1) of hBest1/POPC/Chol and hBest1/SM/Chol composite Langmuir monolayers, we established that the films are in an LE (liquid-expanded) or LE-LC (liquid-condensed) state, the components are well-mixed and the Ca2+ ions have a condensing effect on the surface molecular organization. Cholesterol causes a decrease in the elasticity of both films and a decrease in the ΔGmixπ values (reduction of phase separation) of hBest1/POPC/Chol films. For the hBest1/SM/Chol monolayers, the negative values of ΔGmixπ are retained and equalized with the values of ΔGmixπ in the hBest1/POPC/Chol films. Shifts in phase separation/miscibility by cholesterol can lead to changes in the structure and localization of hBest1 in the lipid rafts and its channel functions.
Collapse
Affiliation(s)
- Pavel Videv
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Tonya D. Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Jong Hun Park
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Veselina Moskova-Doumanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Svetla D. Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
| | - Jordan A. Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria; (P.V.); (K.M.); (J.H.P.); (V.M.-D.); (S.D.P.)
- Correspondence: ; Tel.: +359-2-8167-262; Fax: +359-2-8656-641
| |
Collapse
|
3
|
Self-organization and surface properties of hBest1 in models of biological membranes. Adv Colloid Interface Sci 2022; 302:102619. [PMID: 35276535 DOI: 10.1016/j.cis.2022.102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/22/2022]
Abstract
The transmembrane Ca2+ - activated Cl- channel - human bestrophin-1 (hBest1) is expressed in retinal pigment epithelium and mutations of BEST1 gene cause ocular degenerative diseases colectivelly referred to as "bestrophinopathies". A large number of genetical, biochemical, biophysical and molecular biological studies have been performed to understand the relationship between structure and function of the hBest1 protein and its pathophysiological significance. Here, we review the current understanding of hBest1 surface organization, interactions with membrane lipids in model membranes, and its association with microdomains of cellular membranes. These highlights are significant for modulation of channel activity in cells.
Collapse
|
4
|
Videv P, Mladenov N, Andreeva T, Mladenova K, Moskova-Doumanova V, Nikolaev G, Petrova SD, Doumanov JA. Condensing Effect of Cholesterol on hBest1/POPC and hBest1/SM Langmuir Monolayers. MEMBRANES 2021; 11:membranes11010052. [PMID: 33451008 PMCID: PMC7828479 DOI: 10.3390/membranes11010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Human bestrophin-1 protein (hBest1) is a transmembrane channel associated with the calcium-dependent transport of chloride ions in the retinal pigment epithelium as well as with the transport of glutamate and GABA in nerve cells. Interactions between hBest1, sphingomyelins, phosphatidylcholines and cholesterol are crucial for hBest1 association with cell membrane domains and its biological functions. As cholesterol plays a key role in the formation of lipid rafts, motional ordering of lipids and modeling/remodeling of the lateral membrane structure, we examined the effect of different cholesterol concentrations on the surface tension of hBest1/POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and hBest1/SM Langmuir monolayers in the presence/absence of Ca2+ ions using surface pressure measurements and Brewster angle microscopy studies. Here, we report that cholesterol: (1) has negligible condensing effect on pure hBest1 monolayers detected mainly in the presence of Ca2+ ions, and; (2) induces a condensing effect on composite hBest1/POPC and hBest1/SM monolayers. These results offer evidence for the significance of intermolecular protein–lipid interactions for the conformational dynamics of hBest1 and its biological functions as multimeric ion channel.
Collapse
Affiliation(s)
- Pavel Videv
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Nikola Mladenov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Faculty of Medicine, Medical University-Sofia, 1 Sv. Georgi Sofiiski Str., 1431 Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Veselina Moskova-Doumanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Svetla D. Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Jordan A. Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Correspondence: ; Tel.: +359-2-8167262
| |
Collapse
|