1
|
Kollbek K, Jabłoński P, Perzanowski M, Święch D, Sikora M, Słowik G, Marzec M, Gajewska M, Paluszkiewicz C, Przybylski M. Inert gas condensation made bimetallic FeCu nanoparticles – plasmonic response and magnetic ordering. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:2593-2605. [DOI: 10.1039/d3tc02630b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Bimetallic FeCu nanoparticles of narrow size distribution produced by inert gas condensation (IGC) technique exhibit functional plasmonic and magnetic properties and can be considered as a promising system for the development of biosensors.
Collapse
Affiliation(s)
- Kamila Kollbek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Piotr Jabłoński
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Perzanowski
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Dominika Święch
- Faculty of Foundry Engineering, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Słowik
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Skłodowska University, 3. Maria-Curie-Skłodowska Sq., 20-031, Lublin, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Czesława Paluszkiewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Tian Y, Fu Z, Guo J, He G, Li L, Zhao F, Guo X. Continuous Synthesis of Spherical Polyelectrolyte Brushes by Photo-Emulsion Polymerization in a Microreactor. Polymers (Basel) 2023; 15:4576. [PMID: 38231985 PMCID: PMC10708043 DOI: 10.3390/polym15234576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Nanosized spherical polyelectrolyte brushes (SPBs) are ideal candidates for the preparation of nanometal catalysts, protein separation, and medical diagnostics. Until now, SPBs have been synthesized by photo-emulsion polymerization in a batch reactor, which remains challenging to scale up. This paper reports a successful continuous preparation of SPBs by photo-emulsion polymerization in a self-made microreactor. The effects of residence time, monomer concentration, and feed ratios on the conversion of monomers and SPB structures are systematically investigated by dynamic lighting scattering and transmission electron microscopy. Poly(acrylic acid) (PAA) SPBs obtained in a microreactor exhibiting a narrow size distribution with a short reaction time are very effective in inhibiting the calcium carbonate scale and are comparable to those produced in a batch reactor. This work confirms the feasibility of continuous preparation and scaled-up production of SPBs.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Yang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Jiangtao Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Guofeng He
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Jiangsu Feymer Technology Co., Ltd., Zhangjiagang 215613, China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.Z.); (Y.Z.); (Y.T.); (Z.F.); (G.H.); (L.L.); (F.Z.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
3
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
4
|
Farooqi ZH, Vladisavljević GT, Pamme N, Fatima A, Begum R, Irfan A, Chen M. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Crit Rev Anal Chem 2023; 54:2435-2449. [PMID: 36757081 DOI: 10.1080/10408347.2023.2177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Nicole Pamme
- Department for Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
| | - Arooj Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minjun Chen
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Larrea A, Arruebo M, Serra CA, Sebastián V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. MICROMACHINES 2022; 13:mi13060878. [PMID: 35744492 PMCID: PMC9230220 DOI: 10.3390/mi13060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
A facile and robust microfluidic method to produce nanoparticle-in-microparticle systems (Trojan systems) is reported as a delivery vector for the oral administration of active pharmaceutical ingredients. The microfluidic system is based on two coaxial capillaries that produce monodisperse water-in-oil-in-water (W/O/W) double emulsions in a highly controlled fashion with precise control over the resulting particle structure, including the core and shell dimensions. The influence of the three phase flow rates, pH and drying process on the formation and overall size is evaluated. These droplets are then used as templates for the production of pH-sensitive Trojan microparticles after solvent evaporation. The shell of Trojan microparticles is made of Eudragit®, a methacrylic acid-ethyl acrylate copolymer that would enable the Trojan microparticle payload to first pass through the stomach without being degraded and then dissolve in the intestinal fluid, releasing the inner payload. The synthesis of the pH-sensitive Trojan microparticles was also compared with a conventional batch production method. The payloads considered in this work were different in nature: (1) fluorescein, to validate the feasibility of the polymeric shell to protect the payload under gastric pH; (2) poly(D,L-lactic acid/glycolic acid)-PLGA nanoparticles loaded with the antibiotic rifampicin. These PLGA nanoparticles were produced also using a microfluidic continuous process and (3) PLGA nanoparticles loaded with Au nanoparticles to trace the PLGA formulation under different environments (gastric and intestinal), and to assess whether active pharmaceutical ingredient (API) encapsulation in PLGA is due efficiently. We further showed that Trojan microparticles released the embedded PLGA nanoparticles in contact with suitable media, as confirmed by electron microscopy. Finally, the results show the possibility of developing Trojan microparticles in a continuous manner with the ability to deliver therapeutic nanoparticles in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ane Larrea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Christophe A. Serra
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
- Correspondence: (C.A.S.); (V.S.)
| | - Victor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.L.); (M.A.)
- Department of Chemical Engineering, Campus Río Ebro-Edificio I+D, University of Zaragoza, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (C.A.S.); (V.S.)
| |
Collapse
|
6
|
Light activated pulsatile drug delivery for prolonged peripheral nerve block. Biomaterials 2022; 283:121453. [DOI: 10.1016/j.biomaterials.2022.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
7
|
Palmquist MS, Gruschka MC, Dorsainvil JM, Delawder AO, Saak TM, Danielson MK, Barnes JC. Electrostatic loading and photoredox-based release of molecular cargo from oligoviologen-crosslinked microparticles. Polym Chem 2022; 13:2115-2122. [PMID: 36188127 PMCID: PMC9518833 DOI: 10.1039/d2py00249c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release...
Collapse
Affiliation(s)
- Mark S Palmquist
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Max C Gruschka
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jovelt M Dorsainvil
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Abigail O Delawder
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Tiana M Saak
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Mary K Danielson
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Alejo T, Sebastian V, Mendoza G, Arruebo M. Hybrid thermoresponsive nanoparticles containing drug nanocrystals for NIR-triggered remote release. J Colloid Interface Sci 2021; 607:1466-1477. [PMID: 34592544 DOI: 10.1016/j.jcis.2021.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
The on-demand administration of anaesthetic drugs can be a promising alternative for chronic pain management. To further improve the efficacy of drug delivery vectors, high drug loadings combined with a spatiotemporal control on the release can not only relief the pain according to patient's needs, but also improve the drawbacks of conventional burst release delivery systems. In this study, a hybrid nanomaterial was developed by loading bupivacaine nanocrystals (BNCs) into oligo(ethylene glycol) methyl ether methacrylate (OEGMA)-based thermoresponsive nanogels and coupling them to NIR-absorbing biodegradable copper sulphide nanoparticles (CuS NPs). Those CuS NPs were surface modified with polyelectrolytes using layer-by-layer techniques to be efficiently attached to the surface of nanogels by means of supramolecular interactions. The encapsulation of bupivacaine in the form of nanocrystals allowed to achieve CuS@BNC-nanogels having drug loadings as high as 65.5 wt%. The nanocrystals acted as long-lasting drug reservoirs, leading to an elevated localized drug content, which was useful for their application in prolonged pain relief. The CuS@BNC-nanogels exhibited favorable photothermal transducing properties upon NIR-light irradiation. The photothermal effect granted by the CuS NPs triggered the nano-crystallized drug release to be boosted by the collapse of the thermoresponsive nanogels upon heating. Remote control was achieved for on-demand release at a specific time and place, indicating their potential use as an externally activated triggerable drug-delivery system. Furthermore, cell viability tests and flow cytometry analysis were performed showing satisfactory cytocompatibility in the dose-ranging study having a subcytotoxic concentration of 0.05 mg/mL for CuS@BNC-nanogels. This remotely activated nanoplatform is a promising strategy for long-lasting controlled analgesia and a potential alternative for clinical pain management.
Collapse
Affiliation(s)
- Teresa Alejo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Abstract
Nanomaterials are popularly used in drug delivery, disease diagnosis and therapy. Among a number of functionalized nanomaterials such as carbon nanotubes, peptide nanostructures, liposomes and polymers, gold nanoparticles (Au NPs) make excellent drug and anticancer agent carriers in biomedical and cancer therapy application. Recent advances of synthetic technique improved the surface coating of Au NPs with accurate control of particle size, shape and surface chemistry. These make the gold nanomaterials a much easier and safer cancer agent and drug to be applied to the patient’s tumor. Although many studies on Au NPs have been published, more results are in the pipeline due to the rapid development of nanotechnology. The purpose of this review is to assess how the novel nanomaterials fabricated by Au NPs can impact biomedical applications such as drug delivery and cancer therapy. Moreover, this review explores the viability, property and cytotoxicity of various Au NPs.
Collapse
|