1
|
Lin Y, McClements DJ, Zhang J, Ke L, He Y, Xiao J, Cao Y, Liu X. In vitro digestive behavior of emulsifier-stabilized excipient emulsions affects the bioaccessibility of flavonoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2146-2157. [PMID: 39468933 DOI: 10.1002/jsfa.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/22/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Flavonoids, found in common vegetables and fruits, have health benefits that are often limited by their low bioavailability. Excipient emulsions provide an effective strategy to overcome these obstacles. However, the nature of the emulsifier used to formulate excipient emulsions and the chemical structure of the flavonoids both affect the bioaccessibility of the flavonoids. RESULTS The purpose of this study was to investigate the impact of the interfacial properties of excipient emulsions on the in vitro gastrointestinal fate of representative structural flavonoids (quercetin, kaempferol, and apigenin) through the INFOGEST method. Tween 80 (TW80) (a nonionic surfactant) was more effective at reducing the oil-water interfacial tension than whey protein isolate (WPI) (a protein-based emulsifier) or octenyl succinic anhydride (OSA)-modified starch (MS) (a polysaccharide-based emulsifier). Moreover, TW80 created excipient emulsions with smaller oil droplets, which were more resistant to oral and gastric conditions. The WPI-emulsions underwent severe flocculation in the gastric phase, leading to an appreciable increase in particle size (from 220 to 3000 nm). The TW80-coated oil droplets were more digestible than WPI- or MS-coated ones. This was attributed to the larger lipid surface area for lipase attachment. The bioaccessibility of quercetin, kaempferol, and apigenin was also affected by emulsifiers: TW 80 (25% to 45%) > WPI (14% to 29%) ≈ MS (15% to 25%). Flavonoid bioaccessibility appeared to be related to their molecular properties. CONCLUSION This study provides guidance for the design of effective excipient emulsions to enhance the bioavailability of flavonoids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanping Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | | | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liang Ke
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Yao X, Teng W, Wang J, Wang Y, Zhang Y, Cao J. Polyglycerol polyricinoleate and lecithin stabilized water in oil nanoemulsions for sugaring Beijing roast duck: Preparation, stability mechanisms and color improvement. Food Chem 2024; 447:138979. [PMID: 38518617 DOI: 10.1016/j.foodchem.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.
Collapse
Affiliation(s)
- Xinshuo Yao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
4
|
Phycocyanin-rich water-in-oil-in-water (W1/O/W2) double emulsion with nanosized particles: Improved color stability against light exposure. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Liu N, Lin P, Zhang K, Yao X, Li D, Yang L, Zhao M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
The porosity of carbohydrate-based spray-dried microparticles containing limonene stabilized by pea protein: Correlation between porosity and oxidative stability. Curr Res Food Sci 2022; 5:878-885. [PMID: 35647558 PMCID: PMC9136181 DOI: 10.1016/j.crfs.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022] Open
|
7
|
Goudoulas TB, Vanderhaeghen S, Germann N. Micro-dispersed essential oils loaded gelatin hydrogels with antibacterial activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Böger B, Acre L, Viegas M, Kurozawa L, Benassi M. Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Paulo BB, Alvim ID, Reineccius G, Prata AS. Barrier properties of spray-dried emulsions containing flavorings or unsaturated triglycerides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Du Q, Ji X, Lyu F, Liu J, Ding Y. Heat stability and rheology of high-calorie whey protein emulsion: Effects of calcium ions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Liang Y, Zou J, Zhang X, Shi Y, Tai J, Wang Y, Guo D, Yang M. Preparation and quality evaluation of a volatile oil microemulsion from Flos magnoliae and Centipeda minima. Mol Med Rep 2020; 22:4531-4540. [PMID: 33174034 PMCID: PMC7646747 DOI: 10.3892/mmr.2020.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/10/2020] [Indexed: 11/05/2022] Open
Abstract
In order to improve the water solubility of the volatile oils extracted from Flos magnoliae (FM) and Centipeda minima (CM), they were prepared as a microemulsion (ME), which were then used in the development of an FM and CM volatile oil ME for the treatment of allergic rhinitis (AR). ME was prepared by phase inversion emulsification, and the prescription factors such as emulsifier, co‑emulsifier, oil phase, Km, which represents the ratio of the mass of emulsifier to that of the co‑emulsifier, and preparation factors such as temperature affecting the formation of the ME were selected according to the formation area of ME in a pseudo‑ternary phase diagram. The quality of the ME was evaluated based on its appearance, particle size, Zeta potential and stability. The content of eucalyptol in ME was determined by gas chromatography‑mass spectrometry (GC‑MS). The cumulative permeability of the ME within 24 h was measured with a transdermal diffusion tester. The results revealed that the best formula for preparation of the ME was as follows: Castor oil polyoxyethylene ether (EL‑40) was the emulsifier; the co‑emulsifier was anhydrous ethanol; the Km was 2:1; the mixed phase of volatile oil and isopropyl myristate with mass ratio of 1:1 was used as oil phase; and the preparation temperature was 25˚C. The content of eucalyptol in the ME was 2.57 mg/g, and the cumulative permeability of the ME in 24 h was significantly increased compared with that of the reference oil solution. The appearance of the ME was uniform, and the solution was transparent. In conclusion, compared with traditional preparations, FM and CM volatile oil ME is a novel, improved and more effective preparation for the treatment of AR.
Collapse
Affiliation(s)
- Yulin Liang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jia Tai
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yu Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|