1
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Celep K, Atmaca GY, Aydoğmuş PD, Eroğlu K, Günkara ÖT, Giray G, Tollu G, Özdemir S, Erdoğmuş A. Exploring improved strategies for therapeutic studies and biological activities of novel zinc and indium phthalocyanines. Dalton Trans 2024; 53:17381-17393. [PMID: 39387658 DOI: 10.1039/d4dt02261k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study investigates novel zinc and indium phthalocyanines with Schiff base and sulphur moieties, focusing on their potential for cancer therapy and antimicrobial applications. It explores the effectiveness of photochemical and sono-photochemical methods to enhance singlet oxygen production, which is crucial for photodynamic therapy. The synthesized complexes in this study demonstrated high singlet oxygen quantum yields, with D3 (ZnPc) and D4 (InPc) showing ΦΔPDT values of 0.71 and 0.75, and ΦΔSPDT values of 0.91 and 0.94, respectively. Furthermore, the evaluation for biological properties revealed that both D3 and D4 exhibit significant antidiabetic properties, DPPH radical scavenging activity, DNA cleavage, antimicrobial activity, biofilm inhibition, and microbial cell viability impacts, both with and without photodynamic therapy. Notably, D3 and D4 achieved antimicrobial cell viability inhibition rates of 84.67 ± 4.67% and 98.32 ± 5.96%, respectively, showcasing their effectiveness in photodynamic antimicrobial therapy. Overall, the study highlights the potential of these phthalocyanine complexes as advanced photosensitizers, with strong singlet oxygen generation and promising biological activities, paving the way for future therapeutic applications.
Collapse
Affiliation(s)
- Kevser Celep
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Pelin Demir Aydoğmuş
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Kumsal Eroğlu
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Ömer Tahir Günkara
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| | - Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210 Esenler, Istanbul, Turkey.
| |
Collapse
|
3
|
An Y, Wang Z, Wu FG. Fluorescent carbon dots for discriminating cell types: a review. Anal Bioanal Chem 2024; 416:3945-3962. [PMID: 38886239 DOI: 10.1007/s00216-024-05328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.
Collapse
Affiliation(s)
- Yaolong An
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Anand A, Huang CC, Lai JY, Bano D, Pardede HI, Hussain A, Saleem S, Unnikrishnan B. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anal Bioanal Chem 2024; 416:3907-3921. [PMID: 38656364 DOI: 10.1007/s00216-024-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Darakhshan Bano
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Helen Indah Pardede
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Amina Hussain
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sehresh Saleem
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
5
|
Sánchez-Pineda PA, López-Pacheco IY, Villalba-Rodríguez AM, Godínez-Alemán JA, González-González RB, Parra-Saldívar R, Iqbal HMN. Enhancing the production of PHA in Scenedesmus sp. by the addition of green synthesized nitrogen, phosphorus, and nitrogen-phosphorus-doped carbon dots. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:77. [PMID: 38835059 PMCID: PMC11149319 DOI: 10.1186/s13068-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.
Collapse
Affiliation(s)
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | | | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| |
Collapse
|
6
|
Miao H, Wang P, Cong Y, Dong W, Li L. Preparation of Ciprofloxacin-Based Carbon Dots with High Antibacterial Activity. Int J Mol Sci 2023; 24:ijms24076814. [PMID: 37047789 PMCID: PMC10095197 DOI: 10.3390/ijms24076814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Nowadays, bacterial infections are attracting great attention for the research and development of new antimicrobial agents. As one of the quinolones, ciprofloxacin (CI) has a broad-spectrum, strong antibacterial effect. However, the clinical use of ciprofloxacin is limited by drug resistance. Ciprofloxacin carbon dots (CCDs) with enhanced antibacterial activity and copper-doped ciprofloxacin carbon dots (Cu-CCDs) were synthesized by a simple hydrothermal method. The results of structural analysis and antibacterial experiments show that CCDs and Cu-CCDs have effective antibacterial properties by retaining the active groups of ciprofloxacin (-COOH, C-N, and C-F), and Cu-CCDs doped with copper have a better antibacterial effect. In addition, experiments have shown that Cu-CCDs show excellent antibacterial activity against E. coli and S. aureus and have good biocompatibility, which indicates that they have great prospects in clinical applications. Therefore, novel modified copper CCDs with broad-spectrum antibacterial activity, which can be used as antibacterial nanomaterials for potential applications in the field of antibacterial drugs, were synthesized in this study.
Collapse
Affiliation(s)
- Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Yingge Cong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Wenfei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Fu T, Wan Y, Jin F, Liu B, Wang J, Yin X, Fu X, Tian B, Feng Z. Efficient imaging based on P - and N-codoped carbon dots for tracking division and viability assessment of lactic acid bacteria. Colloids Surf B Biointerfaces 2023; 223:113155. [PMID: 36724563 DOI: 10.1016/j.colsurfb.2023.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Assessment of lactic acid bacteria (LAB) activity plays a key role in the fermented food industry. Fluorescence imaging method based on dye is facile to detect LAB viability. However, it is difficult to obtain stable fluorescence, non-toxic and low-cost dyes. In this study, we prepare P- and N-doped carbon dots (PN-CDs) via microwave-assisted hydrothermal synthesis. The properties of high quantum yield (60.36%) and excitation dependence allowed for multicolor imaging of LAB (Lactobacillus plantarum [L.p] and Streptococcus thermophilus [S.t]). The abundant functional groups and positive charges (+2.34 mV) on the surface of PN-CDs facilitated their quickly integrated into cell wall of live LAB with obvious fluorescence or into dead cells. As a result, PN-CDs can not only be used to rapidly and efficiently monitor bacterial viability (one minute), but can also be used to visualize LAB division using fluorescence imaging. Importantly, the PN-CDs have potential to rapidly detect LAB activity in LAB-fermented juices.
Collapse
Affiliation(s)
- Tianxin Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Furong Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Buwei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jindi Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Yin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangbo Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Xing Y, Yang M, Chen X. Fabrication of P and N Co-Doped Carbon Dots for Fe 3+ Detection in Serum and Lysosomal Tracking in Living Cells. BIOSENSORS 2023; 13:230. [PMID: 36831996 PMCID: PMC9954533 DOI: 10.3390/bios13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Doping with heteroatoms allows the retention of the general characteristics of carbon dots while allowing their physicochemical and photochemical properties to be effectively modulated. In this work, we report the preparation of ultrastable P and N co-doped carbon dots (PNCDs) that can be used for the highly selective detection of Fe3+ and the tracking of lysosomes in living cells. Fluorescent PNCDs were facilely prepared via a hydrothermal treatment of ethylenediamine and phytic acid, and they exhibited a high quantum yield of 22.0%. The strong coordination interaction between the phosphorus groups of PNCDs and Fe3+ rendered them efficient probes for use in selective Fe3+ detection, with a detection limit of 0.39 μM, and we demonstrated their practicability by accurately detecting the Fe3+ contents in bio-samples. At the same time, PNCDs exhibited high lysosomal location specificity in different cell lines due to surface lipophilic amino groups, and real-time tracking of the lysosome morphology in HeLa cells was achieved. The present work suggests that the fabrication of heteroatom-doped CDs might be an effective strategy to provide promising tools for cytology, such as organelle tracking.
Collapse
Affiliation(s)
- Yanzhi Xing
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Liu A, Chen Y, Yang B, Guo Z, Mo L, Chen H, Tao C, Su C, Liu Z. Fluorescein-derived carbon dots with chitin-targeting for ultrafast and superstable fluorescent imaging of fungi. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5121-5131. [PMID: 39634307 PMCID: PMC11501690 DOI: 10.1515/nanoph-2022-0468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2024]
Abstract
Fluorescence microscopy based on fluorochrome has been rapidly developed as the candidate for morphological identification of pathogenic fungi over recent years, offering superior rapidity and efficacy over traditional culture methods. However, the intrinsic quenching properties of fluorescein limit the clinical application of fluorescence imaging. Herein, we report a nano-strategy by converting a commercial fluorescein dye, fluorescent brightener-33 (FB-33), into carbon dots (FB-CDs) through a one-pot hydrothermal method. FB-CDs exhibit a chitin-targeting capacity allowing the selective recognition and ultrafast imaging of fungi within 30 s. The fluorescence quantum yield of FB-CDs is 51.6% which is 8.6-fold higher than that of commercial dye, FB-33. Moreover, FB-CDs also display superstable fluorescence signals under continuous intense light irradiation for 2 h and long-term storage for more than 2 months. The significantly improved photobleaching resistance meets the prolonged fluorescence observation and quantitative analysis of microbial samples. This work offers a novel nanoconversion strategy of commercial dyes for point-of-care testing of pathogenic organisms.
Collapse
Affiliation(s)
- Ao Liu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Yiqiao Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Biwen Yang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Luoqi Mo
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Haolin Chen
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen518107, China
| | - Chenglong Tao
- Guangzhou Haokang Biotechnology Co., Ltd., Guangzhou510660, China
| | - Chengkang Su
- Guangzhou Haokang Biotechnology Co., Ltd., Guangzhou510660, China
| | - Zhiming Liu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| |
Collapse
|
10
|
Pan Y, Wei Z, Ma M, Zhang X, Chi Z, He Y, Wang X, Ran X, Guo L. Broadened optical absorption, enhanced photoelectric conversion and ultrafast carrier dynamics of N, P co-doped carbon dots. NANOSCALE 2022; 14:5794-5803. [PMID: 35352741 DOI: 10.1039/d2nr00211f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon dots (CDs) have attracted extensive attention for their unique properties and promising applications in many fields. Many efforts have been made to improve the optical and physicochemical properties of CDs using an atomic doping strategy; however, the photoelectric properties of CD-based devices have been less studied and the photocurrent density is far from satisfactory for practical operation. Deep understanding of the doping effects on the electronic structure and photophysical properties of CDs is fundamental and essential for effectively improving the optical and photoelectrical performance of CD-based devices. Here, we have synthesized nitrogen (N) and phosphorus (P) co-doped CDs (N, P-CDs) through a one-step hydrothermal approach, and systematically investigated the effects of P-dopants on the improved optical and photoelectric properties of N, P-CDs. The introduction of P atoms into N-CDs significantly changes the electronic structure and extends the absorption spectral region, enhancing the light-harvesting ability of N, P-CDs. Meanwhile, the regulated carrier dynamics have been investigated using time-resolved fluorescence and transient absorption spectroscopy. We found that the carrier recombination was decreased with introducing P atoms, and the photogenerated electrons in the higher excited states could be efficiently transferred to the lowest excited state. Moreover, the photocurrent density of N, P-CDs was increased by twelve times compared with that of N-CDs. Therefore, the effective doping of P atoms can significantly regulate the electronic structure, optical properties, carrier dynamics and photoelectric conversion of N, P-CDs. The achieved broadband light-harvesting, good photoelectric properties and photostability of the as-prepared N, P-CDs demonstrate an important example of P-doping to improve the optical and photoelectrical properties of CD-based devices.
Collapse
Affiliation(s)
- Yatao Pan
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Zhongran Wei
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Mengdi Ma
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Xin Zhang
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Xiaojuan Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Xia Ran
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
11
|
One-Step Preparation of S, N Co-Doped Carbon Quantum Dots for the Highly Sensitive and Simple Detection of Methotrexate. Molecules 2022; 27:molecules27072118. [PMID: 35408528 PMCID: PMC9000489 DOI: 10.3390/molecules27072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Carbon quantum dots (CQDs) are a new class of carbon nanomaterials with favorable features, such as tunable luminescence, unique optical properties, water solubility, and lack of cytotoxicity; they are readily applied in biomedicine. (2) Methods: S, N co-doped CQDs were prepared to develop a highly selective and sensitive fluorescence technique for the detection of methotrexate (MTX). For this purpose, citric acid and thiourea were used as C, N, and S sources in a single-step hydrothermal process to prepare the S, N co-doped CQDs, which displayed remarkable fluorescence properties. (3) Results: Two optimal emissions were observed at the excitation/emission wavelengths of 320/425 nm, respectively. The two emissions were significantly quenched in the presence of MTX. Under optimal conditions, MTX was detected in the linear concentration range of 1–300 μmol/L, with the detection limit of 0.33 μmol/L. The sensing mechanism was due to the fact that the effect of the inner filter on MTX and S, N-CQDs causes fluorescence quenching. The contents of MTX in real medicine samples were evaluated with acceptable recoveries of 98–101%. (4) Conclusions: This approach has great potential for detecting MTX in pharmaceutical analysis.
Collapse
|
12
|
Yu XW, Liu X, Jiang YW, Li YH, Gao G, Zhu YX, Lin F, Wu FG. Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells. Anal Chem 2022; 94:4243-4251. [PMID: 35235297 DOI: 10.1021/acs.analchem.1c04658] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discrimination between dead and live cells is crucial for cell viability evaluation. Carbon dots (CDs), with advantages like simple and cost-effective synthesis, excellent biocompatibility, and high photostability, have shown potential for realizing selective live/dead cell staining. However, most of the developed CDs with the live/dead cell discrimination capacity usually have low photoluminescence quantum yields (PLQYs) and excitation wavelength-dependent fluorescence emission (which can cause fluorescence overlap with other fluorescent probes and make dual-color live/dead staining impossible), and hence, developing ultrabright CDs with excitation wavelength-independent fluorescence emission property for live/dead cell discrimination becomes an important task. Here, using a one-pot hydrothermal method, we prepared ultrasmall (∼1.6 nm), ultrabright (PLQY: ∼78%), and excitation wavelength-independent sulfur-doped carbon dots (termed S-CDs) using rose bengal and 1,4-dimercaptobenzene as raw materials and demonstrated that the S-CDs could rapidly (∼5 min) and accurately distinguish dead cells from live ones for almost all the cell types including bacterial, fungal, and animal cells in a wash-free manner. We confirmed that the S-CDs could rapidly pass through the dead cell surfaces to enter the interior of the dead cells, thus visualizing these dead cells. In contrast, the S-CDs could not enter the interior of live cells and thus could not stain these live cells. We further verified that the S-CDs presented better biocompatibility and higher photostability than the commercial live/dead staining dye propidium iodide, ensuring its bright application prospect in cell imaging and cell viability assessment. Overall, this work develops a type of CDs capable of realizing the live/dead cell discrimination of almost all the cell types (bacterial, fungal, and animal cells), which has seldom been achieved by other fluorescent nanoprobes.
Collapse
Affiliation(s)
- Xin-Wang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
13
|
Rodríguez-Sevilla P, Thompson SA, Jaque D. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
| | - Sebastian A. Thompson
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) C/Faraday 9 Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG) Departamento de Física de Materiales Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal Ctra. Colmenar km. 9,100 Madrid 28034 Spain
| |
Collapse
|
14
|
Khan S, Dunphy A, Anike MS, Belperain S, Patel K, Chiu NHL, Jia Z. Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications. Int J Mol Sci 2021; 22:6786. [PMID: 34202631 PMCID: PMC8269108 DOI: 10.3390/ijms22136786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon nanodots (CNDs) are an emerging class of nanomaterials and have generated much interest in the field of biomedicine by way of unique properties, such as superior biocompatibility, stability, excellent photoluminescence, simple green synthesis, and easy surface modification. CNDs have been featured in a host of applications, including bioimaging, biosensing, and therapy. In this review, we summarize the latest research progress of CNDs and discuss key advances in our comprehension of CNDs and their potential as biomedical tools. We highlighted the recent developments in the understanding of the functional tailoring of CNDs by modifying dopants and surface molecules, which have yielded a deeper understanding of their antioxidant behavior and mechanisms of action. The increasing amount of in vitro research regarding CNDs has also spawned interest in in vivo practices. Chief among them, we discuss the emergence of research analyzing CNDs as useful therapeutic agents in various disease states. Each subject is debated with reflection on future studies that may further our grasp of CNDs.
Collapse
Affiliation(s)
- Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Andrew Dunphy
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Mmesoma S. Anike
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Sarah Belperain
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Kamal Patel
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| | - Norman H. L. Chiu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (S.K.); (A.D.); (M.S.A.); (S.B.); (K.P.)
| |
Collapse
|
15
|
Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids Surf B Biointerfaces 2021; 205:111874. [PMID: 34044332 DOI: 10.1016/j.colsurfb.2021.111874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
In this work, sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) were prepared via one-pot hydrothermal treatment of EDTA disodium and sodium sulfide. The prepared S,N-CQDs were characterized by TEM, XRD, FT-IR, XPS, UV-vis absorption and fluorescence spectra to characterize their morphology, crystal structure, functional groups, elemental composition, and optical properties. It was found that S and N elements were successfully doped into the CQDs and the morphology was approximately spherical with an average particle size of 2.16 nm, in which the excitation/emission wavelengths were 350 and 420 nm, respectively. Compared with single element doped CQDs, double element doped CQDs have a higher quantum yield and excellent optical stability. Cell experiments showed that S,N-CQDs had good biocompatibility because they had no obvious toxicity on both normal cell lines and cancer cell lines. More importantly, based on the synergy of static quenching and dynamic quenching, the S,N-CQDs were used as effective fluorescent probes for sensitive detection of DA, with high anti-interference and low limit of detection. Based on the good biocompatibility of S,N-CQDs, the detection of dopamine in actual serum samples were carried out and the results showed an excellent recovery rate. Therefore, this work provides a dopamine sensor with a practical application prospect.
Collapse
|
16
|
Wang HJ, Hou WY, Hao YW, Jiang WS, Chen HL, Zhang QQ. Novel yellow solid-state fluorescent-emitting carbon dots with high quantum yield for white light-emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119340. [PMID: 33422881 DOI: 10.1016/j.saa.2020.119340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Fluorescence quenching of carbon dots (CDs) occurs in their aggregated state ascribed to direct π-π interactions or excessive resonance energy transfer (RET). Thus, CDs have been severely restricted for applications requiring phosphors that emit in the solid state, such as the fabrication of white light-emitting diodes (WLEDs). In this report, novel CDs with bright solid-state fluorescence (SSF) were synthesized by simple microwave-assisted synthesis method, using 1,4,7,10-tetraazacyclododecane (cyclen) and citric acid as precursors. Under 365 nm UV light, these CDs emit bright yellow SSF, indicating they successfully overcome the aggregation-induced fluorescence quenching (ACQ) effect. When the excitation wavelength (λex) is fixed at 450 nm, the emission peak of the CDs is centered at 546 nm with the Commission Internationale de l'Eclairage chromaticity (CIE) coordinates of (0.43, 0.55), which means that they can be combined with a blue-emitting chip in order to fabricate WLEDs. More importantly, the absolute quantum yield (QY) of these CDs powder reached 48% at λex of 450 nm, which was much higher than many previously reported SSF-emitting CDs and indicating their high light conversion ability in solid-state. Thanks to the excellent optical property of these CDs powder, they were successfully used in the preparation of high-performance WLEDs. This study not only enriches SSF-emitting CD-based nanomaterials with good prospects for application, but also provides valuable reference for subsequent research on the synthesis of solid-state fluorescent CDs.
Collapse
Affiliation(s)
- Hai-Jiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wan-Yi Hou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yong-Wei Hao
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wen-Shuai Jiang
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Hong-Li Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Qi-Qing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|