1
|
Zhang L, Zhou Z, Liu Z, Shi Y, Mao Y, Fu B, Wang Z. Alendronate and polyelectrolyte synergically induce biomimetic mineralization of collagen and demineralized dentin. Int J Biol Macromol 2025; 308:142402. [PMID: 40154709 DOI: 10.1016/j.ijbiomac.2025.142402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Alendronate (ALN), a potent bisphosphonate, plays a significant role in both bone formation and osteoporosis therapy. However, its potential to promote biomimetic mineralization of type I collagen fibrils and demineralized dentin remains unclear. This study reveals that ALN-pretreated collagen fibrils form ester bonds between the hydroxyl groups of ALN and the carboxyl groups of collagen, accompanied by a reduction in collagen surface potential. Additionally, an adsorption equilibrium of ALN to collagen was achieved at 25 mM ALN. ALN pretreatment facilitates intrafibrillar mineralization of type I collagen fibrils in a dose-dependent manner, as well as mineralization of demineralized dentin in synergy with polyelectrolyte-stabilized Amorphous Calcium Phosphate (ACP) nanoparticles. This process effectively restores the mechanical properties of demineralized dentin to levels comparable to natural dentin. Thus, ALN holds potential for localized applications aimed at promoting remineralization of demineralized dentin.
Collapse
Affiliation(s)
- Leiqing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, China; Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Yu S, Zhang L, Ma Q, Zhou J, Liu Y, Zou J, Zhang Q. Anti-caries effect of a novel elastic silicone appliance material incorporating sodium fluoride. Front Microbiol 2025; 15:1517188. [PMID: 39834372 PMCID: PMC11743255 DOI: 10.3389/fmicb.2024.1517188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction This study developed an elastic silicone appliance material incorporating sodium fluoride (NaF) and evaluated its mechanical properties, biocompatibility, antibacterial effects, and remineralization potential. Methods Silicone components A and B were combined with varying concentrations of NaF (0.5, 1, 1.5, 2, and 2.5%), thoroughly mixed, and transferred into molds. After drying and curing, the resulting orthodontic appliance was retrieved from the mold and underwent finishing processes, followed by the assessment of its mechanical properties, cytotoxicity, and antibacterial impact. Additionally, the impact of this novel silicone appliance material on salivary biofilm's activity and acid production was evaluated in samples from children with severe early childhood caries (S-ECC). The hardness of demineralized and remineralized bovine enamel was measured. Results Incorporating NaF (0.5, 1, and 1.5%) resulted in no cytotoxic effects, with cell viability >85%. The fluoride release rate initially increased over 14 days, followed by a gradual decline, maintaining a steady release for approximately 28 days. Incorporating 1.5% NaF preserved the mechanical properties and exhibited specific antibacterial properties that inhibited the growth, biofilm formation, and acid production activity of Streptococcus mutans (S. mutans) and saliva biofilms from S-ECC children. Furthermore, all concentrations of the samples helped improve enamel hardness loss. Discussion The novel silicone appliance material incorporating NaF exhibited antibacterial, fluoride releasing, and enamel remineralization properties while maintaining its physical and chemical integrity without cytotoxic effects.
Collapse
Affiliation(s)
- Shuxing Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Stomatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, Department of Jinjiang Outpatient, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Imran E, Mei ML, Li KC, Ratnayake J, Ekambaram M, Cooper PR. Dental Applications of Ion-Substituted Hydroxyapatite: A Review of the Literature. Dent J (Basel) 2024; 12:304. [PMID: 39452432 PMCID: PMC11506108 DOI: 10.3390/dj12100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Hydroxyapatite (HA) forms an essential constituent of human teeth and bone. Its distinctive characteristic features, such as bioactivity and osteoconductivity, make it an ideal candidate to be used as an implant coating in restorative dentistry and maxillofacial surgery for bone regeneration. However, low fracture toughness and brittleness are a few of the inherent features of HA, which limit its application in load-bearing areas. The potential of HA to engage its lattice structure with either partial or complete substitution with external ions has become an increasing area of research as this phenomenon has the potential to enhance the biological and functional properties of the material. Consequently, this review aimed to highlight the role of various substituted ions in dental applications. Data indicate that the newly formed HA-substituted biomaterials demonstrate enhanced remineralization and antimicrobial activity along with improved hardness. Ion-substituted HA offers a promising strategy for future clinical research as these materials may be incorporated into various dental products for therapeutic treatments.
Collapse
Affiliation(s)
- Eisha Imran
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (M.L.M.); (K.C.L.); (J.R.); (M.E.)
| | | | | | | | | | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (M.L.M.); (K.C.L.); (J.R.); (M.E.)
| |
Collapse
|
4
|
Dias LFG, Costa RC, Sacramento CM, Ruiz KGS, Barão VAR, Lisboa-Filho PN. Tailoring bisphosphonate-doped titanium films to optimally couple cellular responses and antibacterial activity for biomedical applications. Biointerphases 2024; 19:031002. [PMID: 38836787 DOI: 10.1116/6.0003611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Titanium (Ti) is widely utilized as an implant material; nonetheless, its integration with bone tissue faces limitations due to a patient's comorbidities. To address this challenge, we employed a strategic approach involving the growth of thin films by spin-coating and surface functionalization with etidronate (ETI), alendronate (ALE), and risedronate (RIS). Our methodology involved coating of Ti cp IV disks with thin films of TiO2, hydroxyapatite (HA), and their combinations (1:1 and 1:2 v/v), followed by surface functionalization with ETI, ALE, and RIS. Bisphosphonate-doped films were evaluated in terms of surface morphology and physical-chemical properties by techniques such as electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy. The antibacterial potential of bisphosphonates alone or functionalized onto the Ti surface was tested against Staphylococcus aureus biofilms. Primary human bone mesenchymal stem cells were used to determine in vitro cell metabolism and mineralization. Although RIS alone did not demonstrate any antibacterial effect as verified by minimum inhibitory concentration assay, when Ti surfaces were functionalized with RIS, partial inhibition of Staphylococcus aureus growth was noted, probably because of the physical-chemical surface properties. Furthermore, samples comprising TiO2/HA (1:1 and 1:2 v/v) showcased an enhancement in the metabolism of nondifferentiated cells and can potentially enhance the differentiation of osteoblastic precursors. All samples demonstrated cell viability higher than 80%. Addition of hydroxyapatite and presence of bisphosphonates increase the metabolic activity and the mineralization of human bone mesenchymal cells. While these findings hold promise, it is necessary to conduct further studies to evaluate the system's performance in vivo and ensure its long-term safety. This research marks a significant stride toward optimizing the efficacy of titanium implants through tailored surface modifications.
Collapse
Affiliation(s)
- Leonardo F G Dias
- School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina M Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Paulo N Lisboa-Filho
- School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| |
Collapse
|
5
|
Caruso S, Valenti C, Marinucci L, Di Pasquale F, Truppa C, Di Benedetto G, Caruso S, Pagano S. Systematic Review of Zinc's Benefits and Biological Effects on Oral Health. MATERIALS (BASEL, SWITZERLAND) 2024; 17:800. [PMID: 38399049 PMCID: PMC10890596 DOI: 10.3390/ma17040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND This review was based on the following question: "What is the state-of-the-art regarding the effect of zinc exposure in the oral cavity on a population of adults and children, compared to dental products containing materials other than zinc, considering in vivo (clinical trials and observational studies) and in vitro studies?" according to a PICOS strategy format. This study aims to analyze zinc application in dental materials, with different compositions and chemical formulations, considering how mechanical and biological properties may influence its clinical applicability. METHODS In vivo (clinical trials: controlled clinical trials (CCTs) and randomized controlled trials (RCTs); and observational studies: case control and cohort studies) trials or in vitro studies published in English or Italian during the last 10 years on children and adult patients with zinc exposure were included by three different reviewers using the MEDLINE (via PubMed), Scopus, and Web of Science electronic databases. RESULTS Titles and abstracts were evaluated following the eligibility criteria. The full texts of eligible studies were then reviewed against the inclusion/exclusion criteria. Scientific and technical information of the 33 included studies were collected into evidence tables, reporting data on in vivo and in vitro studies. A narrative approach was adopted. CONCLUSIONS Antibacterial activity was found to be the most studied property of zinc, but further investigations are needed to establish adjuvant zinc therapies in patients with oral disease.
Collapse
Affiliation(s)
- Silvia Caruso
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Chiara Valenti
- CISAS “Giuseppe Colombo”, University of Padua, Via Venezia, 15, 35131 Padua, Italy;
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, 06132 Perugia, Italy;
| | - Francesca Di Pasquale
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Claudia Truppa
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| | - Giulia Di Benedetto
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, Paediatric Dentistry, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (G.D.B.); (S.C.)
| | - Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea Delle Fratte, 06156 Perugia, Italy; (F.D.P.); (C.T.)
| |
Collapse
|
6
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
7
|
Yuan R, Zhang Y, Liao L, Ge Y, Li W, Zhi Q. Biomineralization-Inspired Anti-Caries Strategy Based on Multifunctional Nanogels as Mineral Feedstock Carriers. Int J Nanomedicine 2023; 18:4933-4947. [PMID: 37693886 PMCID: PMC10488770 DOI: 10.2147/ijn.s418465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Dentin caries remains a significant public concern, with no clinically viable material that effectively combines remineralization and antimicrobial properties. To address this issue, this study focused on the development of a bio-inspired multifunctional nanogel with both antibacterial and biomineralization properties. Methods First, p(NIPAm-co-DMC) (PNPDC) copolymers were synthesized from N-isopropylacrylamide (NIPAm) and 2-methacryloyloxyethyl-trimethyl ammonium chloride (DMC). Subsequently, PNPDC was combined with γ-polyglutamic acid (γ-PGA) through physical cross-linking to form nanogels. These nanogels served as templates for the mineralization of calcium phosphate (Cap), resulting in Cap-loaded PNPDC/PGA nanogels. The nanogels were characterized using various techniques, including TEM, particle tracking analysis, XRD, and FTIR. The release properties of ions were also assessed. In addition, the antibacterial properties of the Cap-loaded PNPDC/PGA nanogels were evaluated using the broth microdilution method and a biofilm formation assay. The remineralization effects were examined on both demineralized dentin and type I collagen in vitro. Results PNPDC/PGA nanogels were successfully synthesized and loaded with Cap. The diameter of the Cap-loaded PNPDC/PGA nanogels was measured as 196.5 nm at 25°C and 162.3 nm at 37°C. These Cap-loaded nanogels released Ca2+ and PO43- ions quickly, effectively blocking dental tubules with a depth of 10 μm and promoting the remineralization of demineralized dentin within 7 days. Additionally, they facilitated the heavy intrafibrillar mineralization of type I collagen within 3 days. Moreover, the Cap-loaded nanogels exhibited MIC50 and MIC90 values of 12.5 and 50 mg/mL against Streptococcus mutans, respectively, with an MBC value of 100 mg/mL. At a concentration of 50 mg/mL, the Cap-loaded nanogels also demonstrated potent inhibitory effects on biofilm formation by Streptococcus mutans while maintaining good biocompatibility. Conclusion Cap-loaded PNPDC/PGA nanogels are a multifunctional biomimetic system with antibacterial and dentin remineralization effects. This strategy of using antibacterial nanogels as mineral feedstock carriers offered fresh insight into the clinical management of caries.
Collapse
Affiliation(s)
- Rui Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Yuwen Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Yige Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| | - Qinghui Zhi
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510030, People’s Republic of China
| |
Collapse
|
8
|
Li Y, Liu M, Xue M, Kang Y, Liu D, Wen Y, Zhao D, Guan B. Engineered Biomaterials Trigger Remineralization and Antimicrobial Effects for Dental Caries Restoration. Molecules 2023; 28:6373. [PMID: 37687202 PMCID: PMC10489995 DOI: 10.3390/molecules28176373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Dental caries is the most prevalent chronic disease globally, significantly impacting individuals' quality of life. A key reason behind the failure of implanted restorations is their biological inactivity, meaning they are unable to form crosslinks with the surrounding tooth structures, thus making patients susceptible to implant loss and recurrent tooth decay. For the treatment of caries, antibacterial medicine and remineralization are effective means of treating the recurrence of caries. Owing to the rapid progression in the biomaterials field, several biomaterials have been reported to display antimicrobial properties and aid in dentin remineralization. Bioactive materials hold considerable potential in diminishing biofilm accumulation, inhibiting the process of demineralization, enabling dentin remineralization, and combating bacteria related to caries. Bioactive materials, such as fluoride, amorphous calcium phosphate, bioactive glass, collagen, and resin-based materials, have demonstrated their effectiveness in promoting dentin remineralization and exerting antibacterial effects on dental caries. However, the concentration of fluoride needs to be strictly controlled. Although amorphous calcium phosphate can provide the necessary calcium and phosphorus ions for remineralization, it falls short in delivering the mechanical strength required for oral mastication. Resin-based materials also offer different advantages due to the complexity of their design. In this review, we delve into the application of advanced bioactive materials for enhancing dentin remineralization and antibacterial properties. We eagerly anticipate future developments in bioactive materials for the treatment of dental caries.
Collapse
Affiliation(s)
- Yuexiao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
| | - Minda Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
| | - Mingyu Xue
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Dongjuan Liu
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yan Wen
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Boyu Guan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| |
Collapse
|
9
|
Lu X, Qu Y, Zhu T, Qu X, Zhang Z, Yu Y, Hao Y. Applications of photothermally mediated nanohybrids for white spot lesions in orthodontics. Colloids Surf B Biointerfaces 2023; 225:113274. [PMID: 36989816 DOI: 10.1016/j.colsurfb.2023.113274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
In orthodontic treatment, cariogenic bacteria in the oral cavity are the main cause of enamel white spot lesions (WSLs). Therefore, to effectively prevent and treat WSLs, it is crucial to inhibit the cariogenic bacterial activity while promoting the remineralization of demineralized tooth enamel. However, fluoride preparations commonly used for the prevention and treatment of WSLs can induce dental fluorosis if ingested in excess, and their remineralization effect is limited by the residual hydroxyapatite (HAp) content and salivary Ca2+ and PO43- levels. In this study, we propose a strategy (CMCS/ACP@PDA) for antibacterial and remineralization of WSLs by a nanohybrid of carboxymethyl chitosan (CMCS)-stabilized amorphous calcium phosphate (ACP) loaded polydopamine nanoparticles (PDA NPs) based on biomimetic remineralization techniques and biocompatible near-infrared (NIR) photoactivation therapy. The nanohybrid utilizes the excellent photothermal conversion ability of polydopamine for antimicrobial purposes, while CMCS with its own positive and negative charges (-NH3+ and -COO-) acts as a biomimetic mineralizing agent to stabilize ACP, supplemented with abundant Ca2+ and PO43- for remineralization of demineralized enamel. The results showed that CMCS/ACP@PDA could effectively inhibit the adhesion of cariogenic Streptococcus mutants (S. mutants) with high bactericidal rates. In addition, the remineralization of demineralized enamel by nanohybrid was more effective after 7 days of in vitro mineralization. This study provides a theoretical and experimental basis for the use of CMCS/ACP@PDA nanohybrid materials as potential materials against WSLs.
Collapse
|
10
|
Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential Beneficial Effects of Hydroxyapatite Nanoparticles on Caries Lesions In Vitro-A Review of the Literature. Dent J (Basel) 2023; 11:40. [PMID: 36826185 PMCID: PMC9955150 DOI: 10.3390/dj11020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental caries is one of the most common human diseases which can occur in both primary and permanent dentitions throughout the life of an individual. Hydroxyapatite is the major inorganic component of human teeth, consequently, nanosized hydroxyapatite (nHAP) has recently attracted researchers' attention due to its unique properties and potential for caries management. This article provides a contemporary review of the potential beneficial effects of nHAP on caries lesions demonstrated in in vitro studies. Data showed that nHAP has potential to promote mineralization in initial caries, by being incorporated into the porous tooth structure, which resulted from the caries process, and subsequently increased mineral content and hardness. Notably, it is the particle size of nHAP which plays an important role in the mineralization process. Antimicrobial effects of nHAP can also be achieved by metal substitution in nHAP. Dual action property (mineralizing and antimicrobial) and enhanced chemical stability and bioactivity of nHAP can potentially be obtained using metal-substituted fluorhydroxyapatite nanoparticles. This provides a promising synergistic strategy which should be explored in further clinical research to enable the development of dental therapeutics for use in the treatment and management of caries.
Collapse
Affiliation(s)
- Eisha Imran
- Department of Dental Materials, Islamabad Medical and Dental College, Islamabad 44000, Pakistan
| | - Paul R. Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Manikandan Ekambaram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - May Lei Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
11
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Xu J, Shi H, Luo J, Yao H, Wang P, Li Z, Wei J. Advanced materials for enamel remineralization. Front Bioeng Biotechnol 2022; 10:985881. [PMID: 36177189 PMCID: PMC9513249 DOI: 10.3389/fbioe.2022.985881] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dental caries, a chronic and irreversible disease caused by caries-causing bacteria, has been listed as one of the three major human diseases to be prevented and treated. Therefore, it is critical to effectively stop the development of enamel caries. Remineralization treatment can control the progression of caries by inhibiting and reversing enamel demineralization at an early stage. In this process, functional materials guide the deposition of minerals on the damaged enamel, and the structure and hardness of the enamel are then restored. These remineralization materials have great potential for clinical application. In this review, advanced materials for enamel remineralization were briefly summarized, furthermore, an outlook on the perspective of remineralization materials were addressed.
Collapse
Affiliation(s)
- Jiarong Xu
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Shi
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| |
Collapse
|
13
|
Sun F, Hu W, Zhao Y, Li Y, Xu X, Li Y, Zhang H, Luo J, Guo B, Ding C, Li J. Invisible assassin coated on dental appliances for on-demand capturing and killing of cariogenic bacteria. Colloids Surf B Biointerfaces 2022; 217:112696. [PMID: 35834998 DOI: 10.1016/j.colsurfb.2022.112696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
The accumulation of microbes on long-wear artificial dental materials creates a great risk for oral diseases and causes deterioration of material properties. Therefore, smart antibacterial materials capable of resisting the colonization of microorganisms and simultaneously eliminating pathogenic bacteria as needed show outstanding superiority for the recovery of dental health, which are scarcely reported until now. Here, we present a responsive hydrogel coating as invisible assassin on clear overlay appliances target for dental caries. Taking advantage of pH-responsive carboxybetaine methacrylate-dimethylaminoethyl methacrylate copolymer P(CBMA-co-DMAEMA) and antibacterial peptides, the surface potential of hydrogel shifts positively, accompanied with the release of antibacterial peptides when pH gets lower. The hybrid hydrogel layer hence exerts antifouling property and resists bacterial adhesion in normal physiological, while captures and kills cariogenic bacteria in acidic condition. This biocompatible, transparent and stable hydrogel coating has little influence for the aesthetics and mechanical properties of bulk materials. The strategy developed here can provide reference for the design of biomedical devices in other areas.
Collapse
Affiliation(s)
- Fan Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yike Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Guo
- Medical School of Chinese People's Liberation Army (PLA), Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Med-X Center for Materials, Sichuan University, China.
| |
Collapse
|
14
|
Radzki D, Wilhelm-Węglarz M, Pruska K, Kusiak A, Ordyniec-Kwaśnica I. A Fresh Look at Mouthwashes-What Is Inside and What Is It For? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3926. [PMID: 35409608 PMCID: PMC8997378 DOI: 10.3390/ijerph19073926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Mouthwashes are a very popular additional oral hygiene element and there are plenty of individual products, whose compositions are in a state of flux. The aim of our study was to investigate the compositions of mouthwashes and their functions, as well as to discuss their effectiveness in preventing and curing oral diseases and side effects. We searched for mouthwashes available on the market in Poland. We identified 241 individual mouthwash products. The extraction of compositions was performed and functions of the ingredients were assessed. Then, analysis was performed. The evaluation revealed that there are plenty of ingredients, but a typical mouthwash is a water-glycerine mixture and consists of additional sweetener, surfactant, preservative, and some colourant and flavouring agent, as well as usually having two oral health substances, anticaries sodium fluoride and antimicrobial essential oils. The effectiveness or side effects of several substances of mouthwashes were thoroughly discussed. We recommend not multiplying individual mouthwash products and their ingredients beyond medical or pharmaceutical necessity, especially without scientific proof.
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland;
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Marta Wilhelm-Węglarz
- Department of Dental Prosthetics, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland; (M.W.-W.); (I.O.-K.)
| | - Katarzyna Pruska
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland;
| | - Iwona Ordyniec-Kwaśnica
- Department of Dental Prosthetics, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland; (M.W.-W.); (I.O.-K.)
| |
Collapse
|
15
|
Arkaban H, Barani M, Akbarizadeh MR, Pal Singh Chauhan N, Jadoun S, Dehghani Soltani M, Zarrintaj P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel) 2022; 14:1259. [PMID: 35335590 PMCID: PMC8948866 DOI: 10.3390/polym14061259] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA. For example, nano-particles produced from PAA derivatives can be used to deliver drugs due to their stability and biocompatibility. PAA and its nanoconjugates could also be regarded as stimuli-responsive platforms that make them ideal for drug delivery and antimicrobial applications. These properties make PAA a good candidate for conventional and novel drug carrier systems. Here, we started with synthesis approaches, structure characteristics, and other architectures of PAA nanoplatforms. Then, different conjugations of PAA/nanostructures and their potential in various fields of nanomedicine such as antimicrobial, anticancer, imaging, biosensor, and tissue engineering were discussed. Finally, biocompatibility and challenges of PAA nanoplatforms were highlighted. This review will provide fundamental knowledge and current information connected to the PAA nanoplatforms and their applications in biological fields for a broad audience of researchers, engineers, and newcomers. In this light, PAA nanoplatforms could have great potential for the research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles’s University, Udaipur 313002, Rajasthan, India;
| | - Sapana Jadoun
- Department of Analytical and Inorganic Chemistry, Faculty of Sciences, University of Concepcion, Edmundo Larenas 129, Concepcion 4070371, Chile;
| | | | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
16
|
Raji R, Elangomannan S, Subramani R, Louis K, Periasamy M, Dhanaraj G. Calotropis Gigantea Fiber-A Biogenic Reinforcement Material for Europium Substituted Hydroxyapatite/Poly(3,4-propylenedioxythiophene) Matrix: A Novel Ternary Composite for Biomedical Applications. ACS OMEGA 2022; 7:6024-6034. [PMID: 35224363 PMCID: PMC8867816 DOI: 10.1021/acsomega.1c06372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Novel multifunctional biocomposite materials that mimic the properties of bone are the need of the hour. In view of this, the current work is focused on the fabrication of a snail shells derived europium-substituted hydroxyapatite (Eu-HAP)/poly(3,4-propylenedioxythiophene) (PProDOT)/Calotropis gigantea fiber (CGF) ternary composite on titanium (Ti) for biomedical applications. The structural, morphological, mechanical, electrochemical, and biological properties of the as-developed coatings on Ti were characterized. The obtained results clearly confirmed the formation and properties of the ternary composite (Eu-HAP/PProDOT/CGF). The presence of CGF, an exceptional reinforcement material, in the ternary composite is proven to improve mechanical and biological properties compared to other coatings (i.e., coating without CGF). Also, electrochemical studies revealed better anticorrosion properties of the composite-coated Ti in a simulated body fluid (SBF) solution. Similarly, the presence of Eu-HAP and PProDOT in the composite is clearly evident from the antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and also by the cell proliferation and cell adhesion by the MTT assay test. Thus, we suggest that the fabricated Eu-HAP/PProDOT/CGF ternary composite with mechanical, corrosion resistance, and biocompatible properties might be an appropriate candidate for biomedical applications.
Collapse
Affiliation(s)
- Ramachandran Raji
- Department
of Chemistry, Periyar University, Salem 636011, Tamil Nadu, India
| | - Shinyjoy Elangomannan
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610101, Tamil
Nadu, India
| | - Ramya Subramani
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610101, Tamil
Nadu, India
| | - Kavitha Louis
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610101, Tamil
Nadu, India
| | - Manoravi Periasamy
- Materials
Chemistry and Metal Fuel Cycle Group, Indira
Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil
Nadu, India
| | - Gopi Dhanaraj
- Department
of Chemistry, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
17
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Shi H, Ye X, Zhang J, Wu T, Yu T, Zhou C, Ye J. A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium. Bioact Mater 2020; 6:1267-1282. [PMID: 33210024 PMCID: PMC7653209 DOI: 10.1016/j.bioactmat.2020.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 01/09/2023] Open
Abstract
Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe3+ and Sr2+) with different ionic charges and radii. After treated under hot air at different temperatures (110–200 °C), the phase, morphology, structure, physicochemical properties, protein affinity, ions release, and cytological responses of the ion-doped OCPs were investigated comparatively. The results showed that the collapse of OCP crystals gradually occurred, accompanying with the dehydration of hydrated layers and the disintegration of plate-like crystals as the temperature increased. The collapsed crystals still retained the typical properties of OCP and the potential of conversion into hydroxyapatite. Compared to the undoped OCP, Fe-OCP, and Sr-OCP had lower and higher thermostability respectively, leading to different material surface properties and ions release. The adjusted thermostability of Fe-OCP and Sr-OCP significantly enhanced the adsorption of proteins (BSA and LSZ) and the cytological behavior (adhesion, spreading, proliferation, and osteogenic differentiation) of bone marrow mesenchymal stem cells to a varying extent under the synergistic effects of corresponding surface characteristics and early active ions release. This work paves the way for understanding the modification mechanism of calcium phosphates utilizing ion doping strategy and developing bioactive OCP-based materials for tissue repair. OCP was used as a stability model for doping ions with different charges and radii. Collapse of OCP crystals occurred with structural dehydration after heat treatment. Fe and Sr doping altered the thermostability of OCP crystals in an opposite way. The thermostable difference affected the surface properties and ion release of OCP. Active surface and ion release of OCP synergistically mediated its biocompatibility.
Collapse
Affiliation(s)
- Haishan Shi
- School of Stomatology, Jinan University, Guangzhou, 510632, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoling Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jing Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, Guangzhou, 510500, China
| | - Tao Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jiandong Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Shan T, Yin F, Wang S, Qiao Y, Liu P. Surface integrity control of laser cleaning of an aluminum alloy surface paint layer. APPLIED OPTICS 2020; 59:9313-9319. [PMID: 33104648 DOI: 10.1364/ao.404030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Removal of a paint layer of 2024 aluminum alloy was studied using a nanosecond fiber pulsed laser with a maximum power of 30 W and the influence of laser cleaning energy density on the surface integrity of the substrate was explored. The cleaning energy density threshold of the paint layer is 17.69J/cm2 and the damage energy density threshold is 24.77J/cm2. The optimum cleanliness and surface integrity of laser cleaning were obtained when the energy density was 21.23J/cm2. Microhardness and Young's modulus of the surface after laser cleaning were improved by 6% and 25%, respectively. The mechanical properties of the surface of the substrate after laser cleaning were significantly improved, which is an advantage for this high-quality non-destructive cleaning technology of the aircraft skin surface paint layer.
Collapse
|