1
|
Fonseca J, Broto-Ribas A, Jiao L, Pei X. Pickering emulsions stabilized by metal-organic framework nanoparticles. Adv Colloid Interface Sci 2025; 342:103532. [PMID: 40328072 DOI: 10.1016/j.cis.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Pickering emulsions are attractive formulations due to their simplicity, similar to traditional surfactant-based emulsions, and their potential to create functional materials. Recently, Pickering emulsions stabilized by metal-organic framework (MOF) nanoparticles have garnered significant interest. This Review aims to systematize our knowledge of how MOF nanoparticles stabilize Pickering emulsions, providing fundamental insights for advancing this field. We thoroughly examine the emulsification process of Pickering emulsions stabilized by MOF nanoparticles. Additionally, we detail the superstructures derived from these emulsions, including colloidosomes, hydrogel droplets, 3D honeycomb network structures, molecularly imprinted polymers, monoliths, and micromotors. Finally, we discuss challenges and future research opportunities related to this type of emulsion.
Collapse
Affiliation(s)
- Javier Fonseca
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States.
| | - Anna Broto-Ribas
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Li Jiao
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115-5000, United States
| | - Xiaoyan Pei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, PR China
| |
Collapse
|
2
|
Geng L, Huang J, Fang M, Wang H, Liu J, Wang G, Hu M, Sun J, Guo Y, Sun X. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field. Food Chem 2024; 458:140330. [PMID: 38970953 DOI: 10.1016/j.foodchem.2024.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Food safety is an important cornerstone of protecting human health and life. Therefore, it is of great significance to detect possible pollutants in food sensitively and efficiently. Molecularly imprinted polymers (MIPs) and metal-organic frameworks (MOFs) have been widely used in the adsorption and detection of food pollutants. However, traditional MIPs have problems such as uneven loading of the imprinted cavity and slow mass transfer efficiency. While the adsorption of MOFs has low specificity and cannot accurately identify target molecules. Therefore, some researchers have taken advantage of the high specific recognition abilities of MIPs and the large specific surface areas, high porosity and easy functionalization of MOFs to combine MOFs with MIPs, and have achieved a series of important results in the field of food safety detection. This paper reviews the research progress of the application of MOFs-MIPs in the field of food safety detection from 2019 to 2024. It furnishes researchers interested in this domain with a rapid and comprehensive grasp of the latest research status, it also offers them a chance to anticipate future development trends, thereby supporting the continuous advances of MOFs-MIPs in food safety detection.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mingxuan Fang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
3
|
Wang X, Han J, Zhang S, Liu K, Fan X, Bai C, Chen G. Self-polymerization silica nanoparticles based molecularly imprinted polymers for selective recognition of protein. J Chromatogr A 2024; 1732:465260. [PMID: 39142168 DOI: 10.1016/j.chroma.2024.465260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Molecularly imprinted polymers (MIPs) are promising for precise protein separation and purification. However, challenges persist due to their large size, variable configuration, and instability during preparation. Here, a simple silicon self-assembly program was designed to synthesize MIPs without any organic reagents and acid-base catalysis, avoiding the structural damage of protein under severe conditions. In this method, employing hemoglobin (Hb) as a model protein, with tween-20 in emulsification, and tetraethyl orthosilicate (TEOS) as the cross-linking agent, along with co-functional monomers 3-aminopropyltriethoxysilane (APTES) and benzyl(triethoxy)silane (BnTES), enhanced binding efficacy was achieved. Successful imprinting was evidenced through surface morphology observation and physical/chemical property evaluations of the synthesized MIPs. A series of adsorption experiments were performed to investigate the recognition performance of Hb-MIPs. The Hb-MIPs not only exhibited large adsorption capacity (400 μg/mg) and good imprinting factor (6.09) toward template protein, but also showed satisfactory selectivity for reference proteins. Five cycles of adsorption proved that the Hb-MIPs had good reusability. In addition, the successful isolation of HB from bovine blood indicated that Hb-MIPs were an excellent separation and purification material. The mild preparation conditions and good adsorption capacity demonstrated the potential value of this method in separation and purification research.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Jili Han
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Germany
| | - Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changcai Bai
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Pan Q, Gao Z, Meng H, Guo X, Zhang M, Tang Y. A Novel Sulfonamide, Molecularly Imprinted, Upconversion Fluorescence Probe Prepared by Pickering Emulsion Polymerization and Its Adsorption and Optical Sensing Performance. Molecules 2023; 28:molecules28083391. [PMID: 37110624 PMCID: PMC10143443 DOI: 10.3390/molecules28083391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
A novel, molecularly imprinted, upconversion fluorescence probe (UCNP@MIFP) for sulfonamide sensing was fabricated by Pickering emulsion polymerization using UCNP@SiO2 particles as the stabilizer and sulfamethazine/sulfamerazine as the co-templates. The synthesis conditions of the UCNP@MIFP were optimized, and the synthesized probe was characterized by scanning electron microscopy, Fourier transform infrared spectrometer, thermogravimetric analyzer, and fluorescence spectrometer. The UCNP@MIFPs showed a good adsorption capacity and a fast kinetic feature for the template. The selectivity experiment revealed that the UCNP@MIFP has a broad-spectrum molecular recognition capability. Good linear relationships were obtained over the concentration range of 1-10 ng/mL for sulfamerazine, sulfamethazine, sulfathiazole, and sulfafurazole, with low limits of detection in the range of 1.37-2.35 ng/mL. The prepared UCNP@MIFP has the potential to detect four sulfonamide residues in food and environmental water.
Collapse
Affiliation(s)
- Qidi Pan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhe Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - He Meng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xianghua Guo
- Qian'an Agricultural and Rural Bureau, Qian'an 064400, China
| | - Meitian Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
5
|
Sun Y, Yao C, Zeng J, Zhang Y, Zhang Y. Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Chen X, Chai J, Sun B, Yang X, Zhang F, Tian M. Preparation of carbon-based metal organic framework-modified molecularly imprinted polymers for selective recognition of bovine hemoglobin in biological samples. NEW J CHEM 2022. [DOI: 10.1039/d1nj05522d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A carbon-based metal–organic framework-modified molecularly imprinted polymer (C@GI@Cu-MOFs@MIPs) for selective separation and enrichment of BHb.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Baodong Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
| | - Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
7
|
Zhang J, Hao Y, Tian X, Liang Y, He XW, Gao R, Chen L, Zhang Y. Multi-stimuli responsive molecularly imprinted nanoparticles with tailorable affinity for modulated specific recognition of human serum protein. J Mater Chem B 2022; 10:6634-6643. [DOI: 10.1039/d2tb00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of novel multi-stimuli responsive molecularly imprinted polymers with bovine serum protein (BSA) as dummy template (MSR-BSA-MIPs) was fabricated for specific recognition of human serum protein (HSA) with modulated...
Collapse
|
8
|
Capsule-like molecular imprinted polymer nanoparticles for targeted and chemophotothermal synergistic cancer therapy. Colloids Surf B Biointerfaces 2021; 208:112126. [PMID: 34600360 DOI: 10.1016/j.colsurfb.2021.112126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Selective cancer cell targeting, controlled drug release, easy construction and multiple therapeutic modalities are some of the desirable characteristics of drug delivery systems. We designed and built simple capsule-like molecular imprinted polymer (MIP)-based nanoparticles for targeted and chemo-photothermal synergistic cancer therapy. Using dopamine (DA) as functional monomer, cross-linking agent as well as photo-thermal agent, ZIF-8 (zeoliticimidazolate framework-8) as drug carrier, epitope of EGFR (epidermal growth factor receptor) as template molecules, molecular imprinted polymer (MIP) drug carrier was constructed. The ability of MIP layer to bind to EGFR epitope endowed the MD (DOX@MIP) particles to recognize EGFR-overexpressing cancer cells, while the pH-responsiveness and photothermal conversion ability of PDA (polydopamine) achieved chemo-photothermal synergistic effects upon NIR irradiation. Taken together, the MD nanoparticles integrated cancer cell targeting recognition, intelligent drug release, biocompatibility and chemo-photothermal effects, and is therefore a promising tool for targeted cancer therapy with minimal toxicity to normal cells, as well as tumor imaging.
Collapse
|
9
|
He X, Wang Y, Li H, Chen J, Liu Z, Xu F, Zhou Y. Specific recognition of protein by deep eutectic solvent-based magnetic β-cyclodextrin molecularly imprinted polymer. Mikrochim Acta 2021; 188:232. [PMID: 34137917 DOI: 10.1007/s00604-021-04887-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
A magnetic β-cyclodextrin (MCD) surface molecularly imprinted polymer (MIP) based on deep eutectic solvents (DESs) as cross-linker and functional monomer (MCD@DES-MIP) was successfully synthesized for the specific recognition of bovine hemoglobin (BHb). The adsorption behavior of MCD@DES-MIP for BHb was investigated by adsorption thermodynamics, adsorption kinetics, and pH control experiments. The maximum adsorption capacity of MCD@DES-MIP for BHb under the optimized conditions was 195.94 mg g-1 and the imprinting factor was 4.68. In addition, the competitive adsorption experiments demonstrated that MCD@DES-MIP showed excellent selective extraction ability for BHb in the binary mixture of BHb and bovine serum albumin (BSA). The actual sample analysis manifested that MCD@DES-MIP effectively separated BHb from complex samples. The results of circular dichroism spectra proved that the secondary structure of BHb did not change during elution. The result indicated that MCD@DES-MIP can be used as a new imprinting material for the separation and purification of BHb.Graphical abstract Magnetic imprinted microspheres (MCD@DES-MIP) were prepared by free radical polymerization using magnetic β-cyclodextrin (MCD) as carrier, deep eutectic solvents (DESs) as functional monomer and cross-linker. MCD@DES-MIP show high adsorption capacity and excellent selectivity for BHb.
Collapse
Affiliation(s)
- Xiyan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Heqiong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
10
|
Hao Y, Gao Y, Song H, Niu Y, Chen X, Liu X, Gao R, Wang S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe 3O 4-Cu for specific recognition of bovine hemoglobin. Talanta 2021; 233:122496. [PMID: 34215114 DOI: 10.1016/j.talanta.2021.122496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
In this work, a synergistic imprinting strategy combined with metal coordination based on ligand-free Fe3O4-Cu was proposed to fabricate molecularly imprinted polymers (MIPs) for the recognition and isolation of bovine hemoglobin (BHb) specifically in biological samples. Copper doped magnetic microspheres prepared solvothermally in a one-pot pathway act as both magnetic core and metal affinity substrate. Upon anchoring BHb to Fe3O4-Cu through metal coordination, the imprinted layer was formed via dopamine self-polymerization. Profiting from the synergistic effect, the obtained imprinted microspheres exhibited an enhanced adsorption performance with the adsorption capacity of 400.86 mg g-1, imprinting factor of 11.88, selectivity coefficient above 5.8, superior to most of other reported BHb-MIPs. Furthermore, kinetic adsorption analyses pointed to a chemisorption-limited process as described by the pseudo-second-order model, and the isothermal adsorption analyses implied monolayer adsorption, as described by the Langmuir model. In addition, the resultant magnetic MIPs can be used at least six adsorption-desorption cycles without re-incubation in the metallic salt solution, avoiding secondary environmental pollution. Furthermore, the well-defined materials showed selectivity both in individual protein samples and bovine serum, providing a promising potential in bioseparation.
Collapse
Affiliation(s)
- Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuan Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yingying Niu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoyi Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|