1
|
Gao S, Zhang Y, Wang R, Li F, Zhang Y, Zhu S, Wei H, Zhao L, Fu Y, Ye F. Fabrication and characterization of betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers: A potential edible antibacterial and antioxidant packaging material. Food Chem 2025; 481:144059. [PMID: 40157098 DOI: 10.1016/j.foodchem.2025.144059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Active food packaging made from edible materials was considered as a promising alternative to traditional food packaging. Betulin (BE) is a natural active ingredient extracted from the bark of the birch tree, which has anti-inflammation, antibacterial and antioxidant properties. However, the low solubility of BE in water limits its application in active food packaging. In this research, in order to expand the application range of BE, an innovative potentially antimicrobial and antioxidant packaging material was developed. Betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers (BE/HPβCD-IC-NF) with a stoichiometric ratio of 1:2 was prepared by electrospinning. Scanning electron microscopy results showed a smooth surface with no beads on the free-standing BE/HPβCD-IC-NF. The results of NMR hydrogen spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy proved that the BE was successfully encapsulated in the cavity of HPβCD. Meanwhile, the results of thermogravimetric analysis and phase solubility studies proved that the BE/HPβCD-IC-NF enhanced the aqueous solubility and thermal stabilization of BE. Fast dissolving experiment proved that the BE/HPβCD-IC-NF was disintegrated rapidly in water. Furthermore, the free radical scavenging activity and antimicrobial test demonstrated that BE/HPβCD-IC-NF has antioxidant properties and good antimicrobial properties, respectively. Meanwhile, in vivo antimicrobial tests on strawberries proved that BE/HPβCD-IC-NF has an effective effect on the preservation and stabilization of fruits. In conclusion, BE/HPβCD-IC-NF prepared in this study can effectively improve thermal stability, aqueous solubility, antibacterial and antioxidant activity of BE, which provides potential for its application in the field of active food packaging.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ruichi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Zhu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hailan Wei
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Siva S, Han SS. Fabrication of tolmetin/cyclodextrin nanofibers for potential wound healing applications: Physicochemical, in vitro characterization, and scratch assay. Int J Pharm 2025; 677:125644. [PMID: 40288507 DOI: 10.1016/j.ijpharm.2025.125644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The biocompatibility and sustained delivery of bioactive materials are crucial for maximum therapeutic benefits in the medical field. In this study, high-porous biocompatible nanofibers (NFs) were fabricated from inclusion complexes (ICs) of tolmetin (TMN) with 2-hydroxypropyl and methyl-β-cyclodextrin (CD) using an electrospinning method for sustained drug delivery at the wound site. The TMN-CD-IC-NFs were uniform, bead-free fibers with average diameters of 350 ± 55 nm and 225 ± 40 nm, exhibiting improved thermal properties (degradation temperatures of 317.0 °C and 329.2 °C) compared with pristine TMN. X-ray diffraction analysis revealed an amorphous distribution of TMN within the TMN-CD-IC-NFs. Fourier transform infrared and 1H nuclear magnetic resonance spectral analyses confirmed that the phenyl ring of TMN was deeply penetrated and strongly interacted with the atoms inside the CD cavities. Sustained TMN release was observed from TMN-CD-IC-NFs compared to the pure drug. The TMN-CD-IC-NFs had no adverse effects on skin fibroblast cells (NIH/3T3), demonstrating good biocompatibility. Molecular docking analysis demonstrated strong interactions between inflammation-responsible enzyme 6-COX and TMN-CD-ICs. Cultured cells treated with TMN-CD-IC-NFs were well proliferated towards the scratched area and the wound closure rate was higher (80-90%) compared to the control. Thus, fabricated TMN-CD-IC-NFs have potential as sustained drug nanocarriers for wound treatment.
Collapse
Affiliation(s)
- Subramanian Siva
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
3
|
Gao S, Yan H, Xiu Y, Li F, Zhang Y, Wang R, Zhao L, Ye F, Fu Y. Electrospun Nanofibers Incorporated with HPγCD Inclusion Complex for Improved Water Solubility and Activity of Hydrophobic Fungicides Pyrimethanil. Molecules 2025; 30:1456. [PMID: 40286072 PMCID: PMC11990441 DOI: 10.3390/molecules30071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The discovery of efficient and stable nanopesticides with improved water solubility and sustained release effects has become particularly important. Pyrimethanil (Pyr) as a low toxicity fungicide of an aniline pyrimidine group is widely used for the prevention and control of gray mold in crops and ornamental plants, however, poor water solubility hinders its further development. Herein, we use a supramolecular self-assembly process to encapsulate a pyrimethanil in a hydroxypropyl-gamma-cyclodextrin (HPγCD) via electrostatic interactions, thereby constructing the inclusion complex nanofibers. The HPγCD as an environmentally friendly carrier material for pesticide delivery is favorable for facilitating the control efficacy, water solubility, and thermostability with Pyr. The diameter of the prepared inclusion nanofiber is 426.6 ± 82.1 nm. Pyr/HPγCD inclusion complex nanofibers could be completely dissolved in water within 3 s. As predicted, the fungicidal activity of Pyr/HPγCD inclusion complex nanofibers is much higher than that of either Pyr, and the EC50 value of Pyr/HPγCD inclusion nanofibers is 0.437 μg/mL, which is about half of that of Pyr (0.840 μg/mL). The inclusion strategy achieved by Pyr and HPγCD is important for improving the safety of nanopesticides. This work provides a versatile insight to promote the development of water-based pesticide dosage forms and reduce pesticide losses in agricultural production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China; (S.G.)
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China; (S.G.)
| |
Collapse
|
4
|
Li F, Xiu Y, Wang A, Zhang Y, Zhang X, Gao S, Ye F, Fu Y. Environmentally Friendly Sustained-Release Antifungal Cyclodextrin Inclusion Complex Nanofibers for Controlling Fungi. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6345-6352. [PMID: 40016198 DOI: 10.1021/acs.langmuir.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The development of hydrophobic pesticide formulations remains constrained by complicated manufacturing processes, excessive reliance on organic solvents, and indispensable surfactants. The practical application of dimethomorph (DIM) is hindered by its hydrophobic nature, posing risks to nontarget organisms. Inspired by the uptake of nanomaterials by plants, DIM was encapsulated in the cyclodextrin (CD) cavity to optimize its water-solubility and the sustained-release rate. The spatial confinement effect of CD could facilitate the thermostability of DIM. DIM/CD inclusion complex solutions were electrospun to fabricate nanofibers with bead-free and smooth morphology. As predicted, the release of DIM/CD inclusion complex nanofibers reached plateaus with accumulative release values of approximately 75%. The antifungal activity of DIM/CD inclusion complex nanofibers possesses much higher than DIM for controlling Rhizoctonia solani and Haematonectria hematococco, thereby enhancing its antifungal bioactivity and reducing pesticide spraying frequency. The inhibition rates of Rhizoctonia solani by DIM/HPβCD and DIM/HPγCD inclusion complex nanofibers are found to be 55.8% and 53.6% within 144 h, respectively. This work explores the feasibility of inclusion of complex nanofibers as a delivery platform for application in sustained agriculture production.
Collapse
Affiliation(s)
- Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yue Xiu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Feng W, Guo X, Yang G, Yao Y, Zhao L, Gao S, Ye F, Fu Y. Direct electrospinning for producing multiple activity nanofibers consisting of aggregated luteolin/hydroxypropyl-gamma-cyclodextrin inclusion complex. Int J Biol Macromol 2024; 270:132344. [PMID: 38754666 DOI: 10.1016/j.ijbiomac.2024.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.
Collapse
Affiliation(s)
- Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Guo
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Guang Yang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yao Yao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
7
|
Vodyashkin A, Sergorodceva A, Kezimana P, Morozova M, Nikolskaya E, Mollaeva M, Yabbarov N, Sokol M, Chirkina M, Butusov L, Timofeev A. Synthesis and activation of pH-sensitive metal-organic framework Sr(BDC) ∞ for oral drug delivery. Dalton Trans 2024; 53:1048-1057. [PMID: 38099594 DOI: 10.1039/d3dt02822d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are widely used in the biomedical industry. In this study, we developed a new method for obtaining a metal-organic structure of strontium and terephthalic acid, Sr(BDC), and an alternative activation method for removing DMF from the pores. Sr(BDC) MOFs were successfully prepared and characterized by XRD, FTIR, TGA, and SEM. The importance of the activation steps was confirmed by TGA, which showed that the Sr(BDC)(DMF) sample can contain up to a quarter of the solvent (DMF) before activation. In our study, IR spectroscopy confirmed the possibility of removing DMF by ethanol treatment from the Sr-BDC crystals. A comparative analysis of the effect of the activation method on the specific surface and pore size of Sr-BDC and its sorption properties using the model drug doxorubicin showed that due to the undeveloped surface of the Sr-(BDC)(DMF) sample, it is not possible to obtain an adsorption isotherm and determine the pore size distribution, thus showing the importance of the activation step. Cytotoxicity and apoptosis assays were carried out to study the biological activity of MOFs, and we observed relatively low toxicity in the tested concentration range after 48 h, with over 92% cell survival for Sr(BDC)(DMF) and Sr(BDC)(260 °C), with a decrease only in the highest concentration (800 mg L-1). Similar results were observed in our apoptosis assays, as they revealed low apoptotic population generation of 2.52%, 3.23%, and 2.77% for Sr(BDC)(DMF), Sr(BDC) and Sr(BDC)(260 °C), respectively. Overall, the findings indicate that ethanol-activated Sr(BDC) shows potential as a safe and effective material for drug delivery.
Collapse
Affiliation(s)
- Andrey Vodyashkin
- RUDN University, 117198, Moscow, Russia
- Bauman Moscow State Technical University, 105005, Moscow, Russia.
| | | | | | | | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Mariia Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334, Moscow, Russia
| | | | - Alexey Timofeev
- RUDN University, 117198, Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
| |
Collapse
|
8
|
Saeed AM, Taha AG, Dardeer HM, Aly MF. One-pot synthesis of novel chitosan-salicylaldehyde polymer composites for ammonia sensing. Sci Rep 2024; 14:239. [PMID: 38168141 PMCID: PMC10761969 DOI: 10.1038/s41598-023-50243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Chitosan (Chs)-salicylaldehyde (Sal) polymer derivatives were formed via the reaction of Chs-Sal with zinc oxide nanoparticles (ZnO NPs) and beta-cyclodextrin (β-CD). These polymers were synthesized through inclusion with β-CD and doping with ZnO NPs to give pseudopolyrotaxane and Chs-Sal/ZnO NPs composite, respectively, for low-temperature detection and sensing of NH3 vapors as great significance in environmental control and human health. Additionally, the polymer (Chs-Sal/β-CD/ZnO NPs) was prepared via the insertion of generated composite (Chs-Sal/ZnO NPs) through β-cyclodextrin ring. The structural and morphological characterizations of the synthesized derivatives were confirmed by utilizing FTIR, XRD and, SEM, respectively. Also, the optical properties and thermal gravimetric analysis (TGA) of the synthesized polymers were explored. The obtained results confirmed that using β-CD or ZnO NPs for modification of polymer (Chs-Sal) dramatically enhanced thermal stability and optical features of the synthesized polymers. Investigations on the NH3-sensing properties of Chs-Sal/β-CD/ZnO NPs composite were carried out at concentrations down to 10 ppm and good response and recovery times (650 s and 350 s, respectively) at room temperature (RT) and indicated that modification by β-CD and doping with ZnO NPs effectively improves the NH3-sensing response of Chs-Sal from 712 to 6192 using Chs-Sal/β-CD/ZnO NPs, respectively, with low LOD and LOQ of 0.12 and 0.4 ppb, respectively.
Collapse
Affiliation(s)
- Ahmed Muhammed Saeed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed Gaber Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Hemat Mohamed Dardeer
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Moustafa Fawzy Aly
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
9
|
Li J, Li Y, Su W, Zhang X, Liang D, Tan M. In vivo anti-obesity efficacy of fucoxanthin/HP-β-CD nanofibers in high-fat diet induced obese mice. Food Chem 2023; 429:136790. [PMID: 37467668 DOI: 10.1016/j.foodchem.2023.136790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Fucoxanthin (Fx) has poor water solubility and bioavailability, which limits its application in the food industry. To improve the physicochemical properties of Fx, hydroxypropyl-β-cyclodextrin (HP-β-CD) encapsulated Fx nanofibers (Fx/HP-β-CD nanofibers) were fabricated via electrospinning without using polymer. Molecular docking analysis showed the Fx/HP-β-CD nanofibers contained Fx and HP-β-CD at 1:2. Morphological analysis revealed the nanofibers were homogeneous without beads, having a diameter around 499 nm. The thermostability of Fx was significantly improved after encapsulationg by HP-β-CD. Animal studies showed that there was a 14% decrease of body weight, 11% white adipose tissue reduction and 9% lower of liver triglyceride for the mice treated with Fx/HP-β-CD nanofibers as compared with that of Fx treated mice. The total cholesterol was reduced by 23% in mice serum after treatment with Fx/HP-β-CD as compared with that of Fx. Interestingly, the Fx/HP-β-CD in this study could attenuate the testicular histopathology in obese mice.
Collapse
Affiliation(s)
- Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
10
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Preparation and Characterization of Tea Tree Oil-β-Cyclodextrin Microcapsules with Super-High Encapsulation Efficiency. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
12
|
Ding Y, Hao B, Zhang N, Lv H, Zhao B, Tian Y. Rapid determination of thiram and atrazine pesticide residues in fruit and aqueous system based on surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121873. [PMID: 36126624 DOI: 10.1016/j.saa.2022.121873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, a rapid and sensitive strategy was developed to determine thiram (THI) and atrazine (ATZ) by surface-enhanced Raman scattering (SERS) technology. β-cyclodextrin modified silver nanoparticles (β-CD-AgNPs) were synthesized using β-CD as a reducing agent and encapsulating agent under alkaline conditions and employed as SERS substrate. The existence of β-CD can capture the molecules to form host-guest complex and fix molecular orientation in its cavity, thus ensuring the enhanced SERS signal intensity of THI and ATZ. The linear response extends from 2.56 × 10-8 to 2.56 × 10-3 mol/L for THI and 3.08 × 10-8 to 3.08 × 10-3 mol/L for ATZ, with the limits of detection (LOD) of 2.42 × 10-9 mol/L for THI and 7.26 × 10-9 mol/L for ATZ, respectively. The application of the proposed method in real samples including apple and water were investigated, and the results would help promote the application of SERS technology as a powerful analytical tool for detecting other pesticide residues. It is expected that this SERS strategy will provide great value for rapid detecting pesticide residues in food products and environmental systems.
Collapse
Affiliation(s)
- Yanru Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Baoqin Hao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
13
|
Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, Hasnain MS, Ansari MT. Guest-host Relationship of Cyclodextrin and its Pharmacological Benefits. Curr Pharm Des 2023; 29:2853-2866. [PMID: 37946351 DOI: 10.2174/0113816128266398231027100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
Collapse
Affiliation(s)
- Fatmah Alshati
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Farheen Sami
- Department of Pharmaceutics, Hygia Institute of Pharmaceutical Sciences and Research, Lucknow, India
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdome of Saudi Arabia
| | - Shahnaz Majeed
- Department of Pharmacy, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Sheikh Murtuja
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - M Saquib Hasnain
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| |
Collapse
|
15
|
Ibrahim M, Munir S, Ahmed S, Chughtai AH, Ahmad W, Khan J, Murtey MD, Ijaz H, Ojha SC. Gliclazide in Binary and Ternary Systems Improves Physicochemical Properties, Bioactivity, and Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2100092. [PMID: 36466089 PMCID: PMC9718633 DOI: 10.1155/2022/2100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 09/27/2022] [Indexed: 10/03/2023]
Abstract
The poor solubility of the antidiabetic drug gliclazide (Glc) is due to its hydrophobic nature. This research is aimed at improving Glc's solubility and drug release profile, as well as at investigating additional benefits such as bioactivity and antioxidant activity, by forming binary complexes with HPβCD at different w/w ratios (1 : 1, 1 : 2.5, 1 : 4, and 1 : 9) and ternary complexes with HPβCD and Tryp at 1 : 1 : 1, 1 : 1 : 0.27, 1 : 2.5 : 0.27, 1 : 3.6 : 3.6, 1 : 4 : 1, and 1 : 9 : 1, respectively. Complexes were prepared by the physical mixing (PM) and solvent evaporation (SE) methods. The prepared inclusion complexes were meticulously characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. To verify our findings, the inclusion complexes were evaluated by equilibrium solubility, in vitro drug release profile, kinetic models, and antidiabetic and antioxidant activities in animal models. Our results demonstrated that the solubility and drug release profile were found to be enhanced through binary as well as ternary complexes. Notably, ternary complexes with a ratio of 1 : 9 : 1 showed the highest solubility and drug release profile compared to all other preparations. Data on antioxidant activity indicated that the ternary complex had the higher total antioxidant status (TAS), superoxide dismutase (SOD), and catalase (CAT) activity than the binary complex and Glc alone, in contrast to the diabetic group. In vivo antidiabetic activity data revealed a high percentage reduction in the blood glucose level by ternary complexes (49-52%) compared to the binary complexes (45-46%; p ≤ 0.05). HPβCD and Tryp provide a new platform for overcoming the challenges associated with poorly soluble Glc by providing greater complexing and solubilizing capabilities and imparting ancillary benefits to improve the drug's antidiabetic and antioxidant activities.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | | | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mogana Das Murtey
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hira Ijaz
- Department of Pharmacy, Pak–Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Southwest Medical University, Jiangyang District, Luzhou 646000 Sichuan, China
| |
Collapse
|
16
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Li J, Li Y, Zhang X, Miao S, Tan M, Su W. Microfluidic spinning of fucoxanthin-loaded nanofibers for enhancing antioxidation and clarification of fruit juice. Food Funct 2022; 13:1472-1481. [PMID: 35050292 DOI: 10.1039/d1fo03766h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fruit juice is one of the most popular drinks, which requires strict processing conditions to ensure its quality, especially to prevent enzymatic browning and turbidity loss. In this work, a new strategy for the preparation of composite nanofibers for juice clarification and anti-browning control was proposed. The strategy used microfluidic spinning to combine Fucoxanthin (Fx), hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and polyvinyl pyrrolidone (PVP) to prepare Fx/HP-γ-CD-PVP (PCF) nanofibers, which not only reflected the excellent antioxidant properties of cyclodextrin-wrapped Fx, but also achieved a more optimized juice clarification agent dosage. Molecular docking technique was used to prove that the stable inclusion complex of Fx and HP-γ-CD could be formed by hydrogen bonding when the molar ratio of Fx to HP-γ-CD was 1 : 2, and the binding energy was as low as -10.23 kcal mol-1. SEM, XRD, FT-IR and TGA were used to characterize the structure of the composite nanofibers, which showed that the thermal stability and water solubility of the embedded Fx were improved. Further studies showed that the apple juice with PCF nanofibers containing inclusion complexes of Fx and HP-γ-CD at a molar ratio of 1 : 2 (PCF 1 : 2) could significantly improve the DPPH and ABTS radical scavenging activity, and could significantly protect the cell membrane integrity of RAW264.7 cells against H2O2 oxidative damage. Finally, the effects of PCF nanofibers on the quality of fresh juice were studied, including clarification experiment and sensory evaluation. The results showed that the dosage of PVP in PCF 1 : 2 was only about 4% of the conventional dosage, and the browning index of fresh juice was significantly reduced with the best clarification. The available data provided in this study would provide a promising safety strategy for the food processing of fresh juice and the extension of its storage life.
Collapse
Affiliation(s)
- Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Song Miao
- Teagasc Food Research Centre Moorepark, Fermoy, Co. Cork, P61C996, Ireland
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian116034, Liaoning, China
| |
Collapse
|
19
|
Lateh L, Kaewnopparat N, Yuenyongsawad S, Panichayupakaranant P. Enhancing the water-solubility of curcuminoids-rich extract using a ternary inclusion complex system: Preparation, characterization, and anti-cancer activity. Food Chem 2022; 368:130827. [PMID: 34411855 DOI: 10.1016/j.foodchem.2021.130827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Curcuminoids are known to exert diverse pharmacological effects and used in some pharmaceutical formulations. This study describes the preparation, characterization, and enhancement in the solubility and anticancer activity of a curcuminoids-rich extract (CRE) using a ternary inclusion complex system. CRE containing 88.9% w/w curcuminoids was prepared using a 'green' microwave extraction coupled with fractionation on a column of hydrophobic adsorbent resin. The ternary complex consisting of CRE, hydroxylpropyl-β-cyclodextrin and polyvinylpyrrolidone K30 was prepared using the solvent evaporation method and thoroughly characterized using Fourier-transform infrared spectroscopy, powder X-ray diffractograms, differential scanning calorimetry and scanning electron microscopy. The ternary complex of CRE improved the water-solubility of curcuminoids (up to 70.3 µg/mL) as well as the dissolution rate when compared to those of CRE (0 µg/mL). In addition, the ternary complex exhibited significantly stronger anticancer activity against human lung adenocarcinoma (A-549), human cervical adenocarcinoma (HeLa) and human colon adenocarcinoma (HT-29) cell lines than CRE.
Collapse
Affiliation(s)
- Likit Lateh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Nattha Kaewnopparat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supreeya Yuenyongsawad
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.
| |
Collapse
|
20
|
Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, Nazir I, Sadaquat H. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. Polymers (Basel) 2021; 13:polym13244350. [PMID: 34960901 PMCID: PMC8708980 DOI: 10.3390/polym13244350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
- Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
- Correspondence: ; Tel.: +92-300-6720628
| | - Nisar U. Rahman
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Punjab, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Barkat A. Khan
- Drug Design and Cosmetics Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtoonkhwa, Pakistan;
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur 63100, Punjab, Pakistan;
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| |
Collapse
|
21
|
Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for Fast-Disintegrating oral drug delivery. J Colloid Interface Sci 2021; 610:321-333. [PMID: 34923270 DOI: 10.1016/j.jcis.2021.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Tetracycline is a widely used antibiotic suffering from poor water solubility and low bioavailability. Here, hydroxypropyl-beta-cyclodextrin (HPβCD) was used to form inclusion complexes (IC) of tetracycline with 2:1 M ratio (CD:drug). Then, tetracycline-HPβCD-IC was mixed with pullulan- a non-toxic, water-soluble biopolymer - to form nanofibrous webs via electrospinning. The electrospinning of pullulan/tetracycline-HPβCD-IC was yielded into defect-free nanofibers collected in the form of a self-standing and flexible material with the loading capacity of ∼ 7.7 % (w/w). Pullulan/tetracycline nanofibers was also generated as control sample having the same drug loading. Tetracycline was found in the amorphous state in case of pullulan/tetracycline-HPβCD nanofibers due to inclusion complexation. Through inclusion complexation with HPβCD, enhanced aqueous solubility and faster release profile were provided for pullulan/tetracycline-HPβCD-IC nanofibers compared to pullulan/tetracycline one. Additionally, pullulan/tetracycline-HPβCD-IC nanofibers readily disintegrated when wetted with artificial saliva while pullulan/tetracycline nanofibers were not completely absorbed by the same simulate environment. Electrospun nanofibers showed promising antibacterial activity against both gram-positive and gram-negative bacteria. Briefly, our findings indicated that pullulan/tetracycline-HPβCD-IC nanofibers could be an attractive material as orally fast disintegrating drug delivery system for the desired antibiotic treatment thanks to its promising physicochemical and antibacterial properties.
Collapse
|
22
|
Effect of hydrophilic polymer on solubility and taste masking of linezolid in multi-component cyclodextrin inclusion complex: Physicochemical characterization and molecular docking. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers (Basel) 2021; 13:polym13234073. [PMID: 34883577 PMCID: PMC8658939 DOI: 10.3390/polym13234073] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin's complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M-1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M-1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study's findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Nizar Al-Shar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
24
|
Reddy VS, Tian Y, Zhang C, Ye Z, Roy K, Chinnappan A, Ramakrishna S, Liu W, Ghosh R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers (Basel) 2021; 13:3746. [PMID: 34771302 PMCID: PMC8587893 DOI: 10.3390/polym13213746] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023] Open
Abstract
Electrospun nanofibers have been exploited in multidisciplinary fields with numerous applications for decades. Owing to their interconnected ultrafine fibrous structure, high surface-to-volume ratio, tortuosity, permeability, and miniaturization ability along with the benefits of their lightweight, porous nanofibrous structure, they have been extensively utilized in various research fields for decades. Electrospun nanofiber technologies have paved unprecedented advancements with new innovations and discoveries in several fields of application including energy devices and biomedical and environmental appliances. This review article focused on providing a comprehensive overview related to the recent advancements in health care and energy devices while emphasizing on the importance and uniqueness of utilizing nanofibers. A brief description regarding the effect of electrospinning techniques, setup modifications, and parameters optimization on the nanofiber morphology was also provided. The article is concluded with a short discussion on current research challenges and future perspectives.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Yilong Tian
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
- Key Laboratory for Information Photonic Technology of Shaanxi Province, School of Information and Electronics Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| | - Wei Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing 211189, China
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Y.T.); (C.Z.); (Z.Y.); (A.C.)
| |
Collapse
|
25
|
Aytac Z, Xu J, Raman Pillai SK, Eitzer BD, Xu T, Vaze N, Ng KW, White JC, Chan-Park MB, Luo Y, Demokritou P. Enzyme- and Relative Humidity-Responsive Antimicrobial Fibers for Active Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50298-50308. [PMID: 34648257 DOI: 10.1021/acsami.1c12319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active food packaging materials that are sustainable, biodegradable, and capable of precise delivery of antimicrobial active ingredients (AIs) are in high demand. Here, we report the development of novel enzyme- and relative humidity (RH)-responsive antimicrobial fibers with an average diameter of 225 ± 50 nm, which can be deposited as a functional layer for packaging materials. Cellulose nanocrystals (CNCs), zein (protein), and starch were electrospun to form multistimuli-responsive fibers that incorporated a cocktail of both free nature-derived antimicrobials such as thyme oil, citric acid, and nisin and cyclodextrin-inclusion complexes (CD-ICs) of thyme oil, sorbic acid, and nisin. The multistimuli-responsive fibers were designed to release the free AIs and CD-ICs of AIs in response to enzyme and RH triggers, respectively. Enzyme-responsive release of free AIs is achieved due to the degradation of selected polymers, forming the backbone of the fibers. For instance, protease enzyme can degrade zein polymer, further accelerating the release of AIs from the fibers. Similarly, RH-responsive release is obtained due to the unique chemical nature of CD-ICs, enabling the release of AIs from the cavity at high RH. The successful synthesis of CD-ICs of AIs and incorporation of antimicrobials in the structure of the multistimuli-responsive fibers were confirmed by X-ray diffraction and Fourier transform infrared spectrometry. Fibers were capable of releasing free AIs when triggered by microorganism-exudated enzymes in a dose-dependent manner and releasing CD-IC form of AIs in response to high relative humidity (95% RH). With 24 h of exposure, stimuli-responsive fibers significantly reduced the populations of foodborne pathogenic bacterial surrogates Escherichia coli (by ∼5 log unit) and Listeria innocua (by ∼5 log unit), as well as fungi Aspergillus fumigatus (by >1 log unit). More importantly, the fibers released more AIs at 95% RH than at 50% RH, which resulted in a higher population reduction of E. coli at 95% RH. Such biodegradable, nontoxic, and multistimuli-responsive antimicrobial fibers have great potential for broad applications as active and smart packaging systems.
Collapse
Affiliation(s)
- Zeynep Aytac
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Jie Xu
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | | | - Brian D Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Tao Xu
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nachiket Vaze
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141 Singapore
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Yaguang Luo
- Environmental Microbiology and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
26
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
27
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
28
|
Pouladchang A, Tavanai H, Morshed M, Khajehali J, Shamsabadi AS. Controlled release of thiram pesticide from polycaprolactone micro and nanofibrous mat matrix. J Appl Polym Sci 2021. [DOI: 10.1002/app.51641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Azimeh Pouladchang
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Hossein Tavanai
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
- Research Institute for Nanotechnology and Advanced Materials Isfahan University of Technology Isfahan Iran
| | - Mohammad Morshed
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Amir Shahin Shamsabadi
- Research Institute for Nanotechnology and Advanced Materials Isfahan University of Technology Isfahan Iran
| |
Collapse
|
29
|
Escribá A, Thome Da Silva BAT, Lourenço SA, Cava CE. Incorporation of nanomaterials on the electrospun membrane process with potential use in water treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Suharyani I, Muchtaridi M, Mohammed AFA, Elamin KM, Wathoni N, Abdassah M. α-Mangostin/γ-Cyclodextrin Inclusion Complex: Formation and Thermodynamic Study. Polymers (Basel) 2021; 13:polym13172890. [PMID: 34502930 PMCID: PMC8434270 DOI: 10.3390/polym13172890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
α-Mangostin (α-M) has various biological activities, such as anti-cancer, antibacterial, anti-fungal, anti-tyrosin, anti-tuberculosis, anti-inflammatory, and antioxidant. However, it has very low solubility in water. The formulation of this compound requires high amounts of solubilizers, which limits its clinical application. In addition, its low solubility in water is a barrier to the distribution of this drug, thus affecting its potency. Cyclodextrin (CD) is widely used as a solubility enhancer of poorly soluble drugs. This study aimed to increase the solubility of α-M in water through complex formation with CD. The complex of α-Mangostin and γ-Cyclodextrin (α-M/γ-CD CX) was prepared by the solubilization method, resulting in a solubility improvement of α-M in water. Characterization of α-M/γ-CD CX by using FTIR-Spectrometry, XRD, H-, C-, and HMBC-NMR showed that α-M was able to form an inclusion complex with γ-CD. The complex yielded an entrapment efficiency of 84.25 and the thermodynamic study showed that the α-M/γ-CD CX was formed spontaneously, based on the negative values of Gibbs energy and ΔH. Interestingly, the solubility of α-M/γ-CD CX significantly increased by 31.74-fold compared with α-M. These results suggest that α-M/γ-CD CX has the potential in the formulation of water-based preparation for clinical applications.
Collapse
Affiliation(s)
- Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- School of Pharmacy Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | | | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| | - Marline Abdassah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| |
Collapse
|
31
|
Gao S, Li X, Jiang J, Zhao L, Fu Y, Ye F. Fabrication and characterization of thiophanate methyl/hydroxypropyl-β-cyclodextrin inclusion complex nanofibers by electrospinning. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Chouker MA, Abdallah H, Zeiz A, El-Dakdouki MH. Host-quest inclusion complex of quinoxaline-1,4-dioxide derivative with 2-hydroxypropyl-β-cyclodextrin: Preparation, characterization, and antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L. Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl-β-cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5871-5881. [PMID: 34013730 DOI: 10.1021/acs.jafc.1c01351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, flexible and self-standing hydroxypropyl-β-cyclodextrin/difenoconazole inclusion complex (HPβCD/DZ-IC) nanofibers were prepared by polymer-free electrospinning, which exhibited potential to be a new fast-dissolving pesticide formulation. Scanning electron microscopy and optical microscopy were applied to evaluate the morphology of nanofibers, which showed that the resulting HPβCD/DZ-IC nanofibers were bead-free and uniform. In addition, the proton nuclear magnetic resonance (1H NMR) spectrum suggested a stoichiometric ratio of 1:0.9 (HPβCD/DZ). Other characterization methods, such as UV-vis absorption, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), were applied in this study. On the one hand, UV-vis absorption, fluorescence spectroscopy, FT-IR, XRD, and TGA provided useful information for the successful formation of an inclusion complex; on the other hand, the results of TGA indicated the thermal stability of DZ was enhanced after the formation of inclusion complexes. Besides, the phase solubility test could explain the increased water solubility of the nanofibers of inclusion complexes formed by DZ and HPβCD. The results of molecular docking studies demonstrated the most favorable binding interactions when HPβCD combined with DZ. The dissolution test and the antifungal performance test exhibited the characteristics of fast dissolution and the excellent antifungal performance of HPβCD/DZ-IC nanofibers, respectively.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
35
|
Sharma D, Satapathy BK. Physicomechanical performance and encapsulation efficiency of β-cyclodextrin loaded functional electrospun mats based on aliphatic polyesters and their blends. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1489-1513. [PMID: 33977872 DOI: 10.1080/09205063.2021.1925393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Designing complex-forming biodegradable and biocompatible electrospun mats (EMs) by incorporating β- cyclodextrin (β-CD) into polylactic acid (PLA)/poly(ε-caprolactone) (PCL) (70:30 w/w) blend based polyester matrix. The influence of β-CD loading on the morphological, thermal, and microstructural properties was investigated using scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. The studies revealed the presence of characteristic interactions between the polymer matrix and β-CD moieties. Further, the quasi-static mechanical properties of EMs were evaluated using a universal testing machine. An enhancement in modulus and strength was obtained for ∼ 2.5-5 phr of β-CD content and beyond ∼ 5 phr of β-CD content, the mechanical properties of EMs were observed to deteriorate. The contact angle studies indicated a decrease in hydrophobicity of PLA/PCL-based EMs with the increase in β-CD content. The swelling and weight loss studies in phosphate buffer saline (PBS) indicated a subsequent release of β-CD from the EMs. FT-IR and 1H NMR spectra elucidated the removal of curcumin from ethanol-water solutions and its simultaneous encapsulation in β-CD hydrophobic cavities (released) of fabricated EMs. Thus, the study demonstrates the development of aliphatic polyester-based biodegradable-functional EMs with tunable physico-mechanical properties for biomedical applications, facilitating encapsulation and rapid removal of waste hydrophobic ultrafine molecules from the system.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
36
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|