1
|
Liu J, Wang J, Zhu B, Liang K, Zhang Y, Song J, Tu L, Zheng Y, Wang M. Identification of phenols and their formation network during the brewing process of Shanxi aged vinegar. Food Chem 2025; 470:142635. [PMID: 39798261 DOI: 10.1016/j.foodchem.2024.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/15/2025]
Abstract
Phenols are important functional compounds present in vineagr, however, their composition and formation pathways remain uncertain. Herein, non-targeted metabolomics and macrotranscriptomics methods were applied to identify phenols and analyze their formation network during the brewing process of Shanxi aged vinegar. A total of 82 phenols were detected from the raw material and the brewing process. Results indicated that phenolic acids were the major phenols and were mainly formed during acetic acid fermentation stages. Water, reducing sugars, lactic acid, and 7 amino acids influenced the formation and transformation of phenols, as shown through Spearman analysis. Furthermore, 16 genera and 38 enzymes were involved in substrates decomposition and phenols formation according to the metabolic pathway analysis, with Xenobiotics biodegradation and metabolism identified as the main pathway for phenols formation. Lactobacillus and Acetobacter were the key genera responsible for the phenols transformation. This study provides new insights into the phenols formation mechanisms in cereal vinegars and it is helpful for isolating the functional strains to reinforce the phenols formation.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Boya Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Liang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China
| | - Yushi Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co, Ltd, Taiyuan 030400, China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Sürmeli Y, Vardar-Yel N, Tütüncü HE. Recent advances of structure, function, and engineering of carboxylesterases for the pharmaceutical industry: A minireview. Int J Biol Macromol 2025; 307:142206. [PMID: 40107535 DOI: 10.1016/j.ijbiomac.2025.142206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Carboxylesterases have a wide range of applications due to their catalytic efficiency, robust structure, and broad substrate specificity. These enzymes, which can hydrolyze carboxylic acid esters, amides, and thioesters, stand out with their regio- and enantioselective properties. They play a crucial role in synthesizing pharmaceutical intermediates, including secondary and tertiary alcohols, α-hydroxy acids, and various bioactive compounds. However, in some cases, the enantioselectivity of carboxylesterases may be insufficient to achieve conversions with the purity required by the pharmaceutical industry. This review summarizes the crucial role of carboxylesterases, particularly in the pharmaceutical field, focusing on the classification, structure, and engineering approaches. After introducing the main families of carboxylesterases, the structural studies are presented to give a comprehensive insight into the active site architecture and related key determinants for enantioselectivity. The protein engineering studies to improve the enantioselectivity of carboxylesterases are discussed along with solvent engineering and immobilization applications.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey.
| |
Collapse
|
3
|
Wang Y, Deng C, Wang X. Characterization of a novel salt- and solvent-tolerant esterase Dhs82 from soil metagenome capable of hydrolyzing estrogenic phthalate esters. Biophys Chem 2025; 316:107348. [PMID: 39531866 DOI: 10.1016/j.bpc.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Esterases that can function under extreme conditions are important for industrial processing and environmental remediation. Here, we report the identification of a salt- and solvent-tolerant esterase, Dhs82, from a soil metagenomic library. Dhs82 prefers short-chain p-nitrophenyl (p-NP) esters and exhibits enzymatic activity up to 1460 ± 61 U/mg towards p-NP butyrate. Meanwhile, Dhs82 can catalyze the hydrolysis of dialkyl phthalate esters, especially the widely-used diethyl phthalate (DEP), dipropyl phthalate (DPP) and di-n-butyl phthalate (DBP). Importantly, as an acidic protein with negative charges dominating its surface, Dhs82 is highly active and extraordinarily stable at high salinity. This property is quite rare among previously reported esterases/hydrolases capable of degrading phthalate esters (PAEs). In addition, Dhs82 activity can be significantly enhanced in the presence of solvents over a concentration range of 10-30 % (v/v). Notably, Dhs82 also showed high stability towards these solvents and solvent concentrations as high as 50-60 % (v/v) are required to inactivate Dhs82. Furthermore, molecular docking revealed the key residues, including the catalytic triad (Ser156, His281, and Asp251) and the surrounding Gly84 and Gly85, involved in the interaction of Dhs82 with DBP, depicting how Dhs82 degrades PAEs as a family IV esterase. Together, these diverse properties make Dhs82 a valuable candidate for both basic research and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyan Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunmei Deng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Wang H, Chen H, Cui X, Zhang Y, Zhou J, Chen X. Simultaneous determination of unecritinib (TQ-B3101) and its active metabolite crizotinib in rat plasma by LC-MS/MS:An application to pharmacokinetic studies. J Pharm Biomed Anal 2024; 246:116199. [PMID: 38744200 DOI: 10.1016/j.jpba.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Unecritinib (TQ-B3101) is a selective tyrosine kinase receptor inhibitor. In the study, in vitro metabolic experiments revealed that the hydrolysis of TQ-B3101 was mainly catalyzed by carboxylesterase 2 (CES2), followed by CES1. Next, a sensitive and reliable LC-MS/MS method was established for the simultaneous determination of TQ-B3101 and its metabolite crizotinib in rat plasma. To prevent in vitro hydrolysis of TQ-B3101, sodium fluoride, the CESs inhibitor at a concentration of 2 M, was immediately added after whole blood collection. Plasma samples were extracted by acetonitrile-induced protein precipitation method, and chromatographically separated on a Gemini C18 column (50 mm × 2.0 mm i.d., 5 μm) using gradient elution with a mobile phase of 0.1% formic acid and 5 mmol/L ammonium acetate with 0.1% formic acid. The retention times for TQ-B3101 and crizotinib were 2.61 and 2.38 min, respectively. The analytes were detected with tandem mass spectrometer by positive electrospray ionization, using the ion transitions at m/z 492.3 → 302.3 for TQ-B3101, m/z 450.3 → 260.3 for crizotinib, and m/z 494.0 → 394.3 for imatinib (internal standard). Method validation was conducted in the linear range of 1.00-800 ng/mL for the two analytes. The precision, accuracy and stabilities all met the acceptance criteria. The pharmacokinetic study indicated that TQ-B3101 was rapidly hydrolyzed to crizotinib with the elimination half-life of 1.11 h after a single gavage administration of 27 mg/kg to Sprague-Dawley rats, and the plasma exposure of TQ-B3101 was only 2.98% of that of crizotinib.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Huixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Xinran Cui
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yuchen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Jialan Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Wang D, Jin Y, Guan C, Yang Q, He G, Xu N, Han X. Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus. TREE PHYSIOLOGY 2024; 44:tpae071. [PMID: 38905297 DOI: 10.1093/treephys/tpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| | - Yuting Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Chaonan Guan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, No. 666 Wusu street, Lin'an district, Hangzhou 311300, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, No. 2025 Chengluo Avenue, Longquanyi District, Chengdu 610106, China
| | - Nan Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Xuemin Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
6
|
Fang J, An L, Yu J, Ma J, Zhou R, Wang B. Characterization of a novel carboxylesterase from Streptomyces lividans TK24 and site-directed mutagenesis for its thermostability. J Biosci Bioeng 2024:S1389-1723(24)00130-0. [PMID: 38871580 DOI: 10.1016/j.jbiosc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
As an industrial enzyme that catalyzes the formation and cleavage of ester bonds, carboxylesterase has attracted attention in fine chemistry, pharmaceutical, biological energy and bioremediation fields. However, the weak thermostability limits their further developments in industrial applications. In this work, a novel carboxylesterase (EstF) from Streptomyces lividans TK24, belonging to family XVII, was acquired by successfully heterologous expressed and biochemically identified. The EstF exhibited optimal activity at 55 °C, pH 9.0 and excellent catalytic performances (Km = 0.263 mM, kcat/Km = 562.3 s-1 mM-1 for p-nitrophenyl acetate (pNPA2) hydrolysis). Besides, the EstF presented exceptionally high thermostability with a half-life of 387.23 h at 55 °C and 2.86 h at 100 °C. Furthermore, the EstF was modified to obtain EstFP144G using the site-directed mutation technique to investigate the effect of single glycine on thermostability. Remarkably, the mutant EstFP144G displayed a 5.10-fold increase of half-life at 100 °C versus wild-type without affecting catalytic performance. Structural analysis implied that the glycine introduction could release a steric strain and induce cooperative effects between distal residues to increase the thermostability. Therefore, the thermostable EstF and EstFP144G with prominently catalytic characteristics have potential industrial applications and the introduction of a single glycine strategy opens up alternative avenues for the thermostability engineering of other enzymes.
Collapse
Affiliation(s)
- Jinxin Fang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Lihua An
- Medical and Health Analysis Center, Peking University, Beijing 100191, China
| | - Jiao Yu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jinxue Ma
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Rongjie Zhou
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| |
Collapse
|
7
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
8
|
Feng J, Gong Y, Yang S, Qiu G, Tian H, Sun B. Determination of carboxylesterase by fluorescence probe to guide detection of carbamate pesticide. LUMINESCENCE 2024; 39:e4625. [PMID: 37947027 DOI: 10.1002/bio.4625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.
Collapse
Affiliation(s)
- Jingyi Feng
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Yue Gong
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Guo Qiu
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
9
|
Yuan SF, Yue XJ, Hu WF, Wang Y, Li YZ. Genome-wide analysis of lipolytic enzymes and characterization of a high-tolerant carboxylesterase from Sorangium cellulosum. Front Microbiol 2023; 14:1304233. [PMID: 38111649 PMCID: PMC10725956 DOI: 10.3389/fmicb.2023.1304233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Microorganisms are important sources of lipolytic enzymes with characteristics for wide promising usages in the specific industrial biotechnology. The cellulolytic myxobacterium Sorangium cellulosum is rich of lipolytic enzymes in the genome, but little has been investigated. Here, we discerned 406 potential lipolytic enzymes in 13 sequenced S. cellulosum genomes. These lipolytic enzymes belonged to 12 families, and most are novel with low identities (14-37%) to those reported. We characterized a new carboxylesterase, LipB, from the alkaline-adaptive So0157-2. This enzyme, belonging to family VIII, hydrolyzed glyceryl tributyrate and p-nitrophenyl esters with short chain fatty acids (≤C12), and exhibited the highest activity against p-nitrophenyl butyrate. It retained over 50% of the activities in a broad temperature range (from 20°C to 60°C), alkaline conditions (pH 8.0-9.5), and the enzymatic activity was stable with methanol, ethanol and isopropanol, and stimulated significantly in the presence of 5 mM Ni2+. LipB also exhibited β-lactamase activity on nitrocefin, but not ampicillin, cefotaxime and imipenem. The bioinformatic analysis and specific enzymatic characteristics indicate that S. cellulosum is a promising resource to explore lipolytic enzymes for industrial adaptations.
Collapse
Affiliation(s)
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | | | | | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Chen R, Gao X, Nie T, Wu J, Wang L, Osman A, Feng Y, Li X, Zhang Y. Crystal structure of the GDSL family esterase EstL5 in complex with PMSF reveals a branch channel of the active site pocket. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1833-1839. [PMID: 37705347 PMCID: PMC10686790 DOI: 10.3724/abbs.2023108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 09/15/2023] Open
Abstract
Esterases/lipases from the GDSL family have potential applications in the hydrolysis and synthesis of important esters of pharmaceutical, food, and biotechnical interests. However, the structural and functional understanding of GDSL enzymes is still limited. Here, we report the crystal structure of the GDSL family esterase EstL5 complexed with PMSF at 2.34 Å resolution. Intriguingly, the PMSF binding site is not located at the active site pocket but is situated in a surface cavity. At the active site, we note that there is a trapped crystallization solvent 1,6-hexanediol, which mimics the bound ester chain, allowing for further definition of the active site pocket of EstL5. The most striking structural feature of EstL5 is the presence of a unique channel, which extends approximately 18.9 Å, with a bottleneck radius of 6.8 Å, connecting the active-site pocket and the surface cavity. Replacement of Ser205 with the bulk aromatic residue Trp or Phe could partially block the channel at one end and perturb its access. Reduced enzymatic activity is found in the EstL5 S205W and EstL5 S205F mutants, suggesting the functional relevance of the channel to enzyme catalysis. Our study provides valuable information regarding the properties of the GDSL-family enzymes for designing more efficient and robust biocatalysts.
Collapse
Affiliation(s)
- Runsha Chen
- School of Food and BioengineeringChangsha University of Science & TechnologyChangsha410004China
| | - Xuechun Gao
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Ting Nie
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Jinhong Wu
- Department of Food Science and TechnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200024China
| | - Lin Wang
- Gastro Endoscopy CenterShanghai Children’s HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200062China
| | - Ali Osman
- Biochemistry DepartmentFaculty of AgricultureZagazig UniversityZagazigEgypt
| | - Yan Feng
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xianghong Li
- School of Food and BioengineeringChangsha University of Science & TechnologyChangsha410004China
| | - Yong Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
11
|
Zhang M, Yang K, Yang L, Diao Y, Wang X, Hu K, Li Q, Li J, Zhao N, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. A novel cold-adapted pyrethroid-degrading esterase from Bacillus subtilis J6 and its application for pyrethroid-residual alleviation in food matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132847. [PMID: 39491987 DOI: 10.1016/j.jhazmat.2023.132847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Prolonged and widespread use of pyrethroid pesticides a significant concern for human health. The initial step in pyrethroid bioremediation involves the hydrolysis of ester-bond. In the present study, the esterase genes est10 and est13, derived from Bacillus subtilis, were successfully cloned and expressed in Escherichia coli. Recombinant Est10 and Est13 were classified within esterase families VII and XIII, respectively, both of which exhibited conserved G-X-G-X-G motifs. These enzymes demonstrated the capability to degrade pyrethroids, with Est13 exhibiting superior efficiency, and thus was selected for further investigation. The degradation products of β-cypermethrin by Est13 were identified as 3-phenoxybenzoic acid, 3-phenoxybenzaldehyde, and 3-(2,2-Dichloroethenyl)- 2,2-dimethyl-cyclopropanecarboxylate, with key catalytic triads comprising Ser93, Asp192, and His222. Notably, Est13 exhibited the highest β-cypermethrin-hydrolytic activity at 25 °C and a pH of 7.0, showing robust stability in low and medium temperature environment and a broad range of pH levels. Furthermore, Est13 displayed notable resistance to organic solvents and NaCl, coupled with wide substrate specificity. Moreover, Est13 exhibited substantial efficiency in removing β-cypermethrin residues from various food items such as milk, meat, vegetables, and fruits. These findings underscore the potential of Est13 for application in the bioremediation of pyrethroid-contaminated environments and reduction of pyrethroid residues in food products.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kun Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yangyu Diao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
12
|
Kuan JE, Tsai CH, Chou CC, Wu C, Wu WF. Enzymatic Characterization of a Novel HSL Family IV Esterase EstD04 from Pseudomonas sp. D01 in Mealworm Gut Microbiota. Molecules 2023; 28:5410. [PMID: 37513282 PMCID: PMC10385968 DOI: 10.3390/molecules28145410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.
Collapse
Affiliation(s)
- Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Chi Chou
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Lu Q, Pan K, Liu J, Zhang T, Yang L, Yi X, Zhong G. Quorum sensing system effectively enhances DegU-mediated degradation of pyrethroids by Bacillus subtilis. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131586. [PMID: 37178530 DOI: 10.1016/j.jhazmat.2023.131586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The contamination of the natural environment is a growing concern that threatens all life forms, including microorganisms. Bacteria protect themselves by initiating quorum sensing (QS), a bacterial cell-cell communication, to generate adaptive responses to these pollutants. Bacillus subtilis has a typical QS ComQXPA system that regulates the phosphorylation of the transcription factor DegU (DegU-P), and thus can mediate the expression of various downstream genes under different stress conditions. Herein, we found that cesB, a gene of Bacillus subtilis 168, plays a key role in pyrethroid degradation, and cesB-mediated degradation could be enhanced by coordinating with the ComX communication system. Using β-cypermethrin (β-CP) as a paradigm, we demonstrated that DegU-P increased upon exposure to β-CP, thus facilitating β-CP degradation by binding to the upstream regulatory regions of cesB, leading to the activation of the expression of cesB. Further, we showed that the expression of different levels of phosphorylated DegU in a degU deletion strain resulted in varying degrees of β-CP degradation efficiency, with phosphorylated DegUH12L achieving 78.39% degradation efficiency on the first day, surpassing the 56.27% degradation efficiency in the wild type strain. Consequently, based on the conserved regulatory mechanism of ComQXPA system, we propose that DegU-P-dependent regulation serves as a conserved defense mechanism owing to its ability to fine-tune the expression of genes involved in the degradation of pollutants upon exposure to different pesticides.
Collapse
Affiliation(s)
- Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
15
|
Hu J, Wang G, Hou M, Du S, Han J, Yu Y, Gao H, He D, Shi J, Lee YW, Mohamed SR, Dawood DH, Hong Q, Liu X, Xu J. New Hydrolase from Aeromicrobium sp. HA for the Biodegradation of Zearalenone: Identification, Mechanism, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2411-2420. [PMID: 36701132 DOI: 10.1021/acs.jafc.2c06410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin most frequently found in cereals that can cause reproductive disorders in livestock and pose a severe threat to animal husbandry. In this study, we isolated a ZEN-degrading Aeromicrobium strain from soil and found that ZenH, a hydrolase, is responsible for the hydrolysis of ZEN through comparative proteomics and biochemical studies. ZenH exhibited the highest similarity with lactone hydrolase ZHD607 from Phialophora americana at 21.52%. ZenH displayed maximal enzymatic activity at pH 7.0 and 55 °C with a Michaelis constant of 12.64 μM. The catalytic triad of ZenH was identified as S117-D142-H292 by molecular docking and site-directed mutagenesis. ZenH catalyzed the hydrolysis of ZEN to a novel metabolite, (S,E)-4-hydroxy-2-(10-hydroxy-6-oxoundec-1-en-1-yl)-7-oxabicyclo[4.2.0]octa-1,3,5-trien-8-one, which exhibited significantly lower estrogenic toxicity than ZEN. This study illustrates a novel ZEN-degrading enzyme and reveals a new degradation product. Furthermore, the enzyme showed good potential for detoxifying ZEN during food processing.
Collapse
Affiliation(s)
- Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Mingxuan Hou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Shilong Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Jun Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Yangguang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Hongxia Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
| | - Yin-Won Lee
- School of Agricultural Biotechnology, Seoul National University, Seoul08826, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Industries and Nutrition Research Institute, Food Toxicology and Contaminants Department, National Research Centre, Tahreer St., Dokki, Giza12411, Egypt
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura35516, Egypt
| | - Qing Hong
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang212013, Jiangsu, People's Republic of China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs /Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing210014, People's Republic of China
- College of Life Science, Nanjing Agriculture University, Nanjing210095, People's Republic of China
| |
Collapse
|
16
|
Fang D, Xue D, Liu X, Cao L, Zhang J, Gong C. Concurrent production of ferulic acid and glucose from wheat bran by catalysis of a putative bifunctional enzyme. BIORESOURCE TECHNOLOGY 2023; 369:128393. [PMID: 36442604 DOI: 10.1016/j.biortech.2022.128393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work is to study a bifunctional endoglucanase/carboxylesterase in Sphingobacterium soilsilvae Em02 and express it in soluble form in engineered Escherichia coli. The molecular weight of the recombinant protein of the bifunctional enzyme was 41 KDa. This research also determined the enzymatic activities of the bifunctional enzymes using microcrystalline cellulose and p-nitrophenyl butyrate as substrates and found 40 °C as the optimum temperature for their enzymatic activities. The optimal pH in dual function was 6.0 for endoglucanase and 7.0 for carboxylesterase. The bifunctional enzyme also exhibited enzymatic activities on the natural biomass by generating up to 3.94 mg of glucose and 49.4 μg of ferulic acid from 20 mg of destarched wheat bran. This indicates the broad application prospects of the bifunctional enzyme in agriculture and industry.
Collapse
Affiliation(s)
- Donglai Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaoji Liu
- CECEP (Feixi) WTE CO., LTD., Hefei 230001, PR China
| | - Liping Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
17
|
Application of Milk Permeate as an Inducer for the Production of Microbial Recombinant Lipolytic Enzymes. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinantly produced enzymes are applied in many fields, ranging from medicine to food and nutrition, production of detergents, textile, leather, paper, pulp, and plastics. Thus, the cost-effectiveness of recombinant enzyme synthesis is an important issue in biotechnological industry. Isopropyl-β-D-thiogalactoside (IPTG), an analog of lactose, is currently the most widely used chemical agent for the induction of recombinant enzyme synthesis. However, the use of IPTG can lead to production of toxic elements and can introduce physiological stress to cells. Thus, this study aims to find a simpler, cheaper, and safer way to produce recombinant enzymes. In this study, production of several previously designed recombinant lipolytic enzymes (GDEst-95 esterase, GD-95RM lipase, fused GDEst-lip lipolytic enzyme, and putative cutinase Cut+SP from Streptomyces scabiei 87.22) is induced in E. coli BL21 (DE3) using 4 mM milk permeate, a type of waste of the milk manufacturing process possessing >82% lactose. The SDS-PAGE analysis clearly indicates synthesis of all target enzymes during a 2–12 h post-induction timeframe. Further investigation of GDEst-95, GD-95RM, GDEst-lip, and Cut+SP biocatalysts was carried out spectrophotometrically and using zymography method, confirming production of fully active enzymes.
Collapse
|
18
|
Yang YL, Li X, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of carboxylesterase genes in Tenebrio molitor and other four tenebrionids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21967. [PMID: 36111353 DOI: 10.1002/arch.21967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (COEs) have various functions in wide taxons of organisms. In insects, COEs are important enzymes involved in the hydrolysis of a variety of ester-containing xenobiotics, neural signal transmission, pheromone degradation, and reproductive development. Understanding the diversity of COEs is basic to illustrate their functions. In this study, we identified 53, 105, 37, and 39 COEs from the genomes of Tenebrio molitor, Asbolus verucosus, Hycleus cichorii, and H. phaleratus in the superfamily of Tenebrionidea, respectively. Phylogenetic analysis showed that 234 COEs from these four species and those reported in Tribolium castaneum (63) could be divided into 12 clades and three major classes. The α-esterases significantly expanded in T. molitor, A. verucosus, and T. castaneum compared to dipteran and hymenopteran insects. In T. molitor, most COEs showed tissue and stage-specific but not a sex-biased expression. Our results provide insights into the diversity and evolutionary characteristics of COEs in tenebrionids, and lay a foundation for the functional characterization of COEs in the yellow mealworm.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Science, Lijiang, China
| | - Xun Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
19
|
Ma L, Dai X, Ai G, Zheng X, Zhang Y, Pan C, Hu M, Jiang C, Wang L, Dong Z. Isolation and Identification of Efficient Malathion-Degrading Bacteria from Deep-Sea Hydrothermal Sediment. Microorganisms 2022; 10:microorganisms10091797. [PMID: 36144399 PMCID: PMC9502784 DOI: 10.3390/microorganisms10091797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
The genetic and metabolic diversity of deep-sea microorganisms play important roles in phosphorus and sulfur cycles in the ocean, distinguishing them from terrestrial counterparts. Malathion is a representative organophosphorus component in herbicides, pesticides, and insecticides and is analogues of neurotoxic agent. Malathion has been one of the best-selling generic organophosphate insecticides from 1980 to 2012. Most of the sprayed malathion has migrated by surface runoff to ocean sinks, and it is highly toxic to aquatic organisms. Hitherto, there is no report on bacterial cultures capable of degrading malathion isolated from deep-sea sediment. In this study, eight bacterial strains, isolated from sediments from deep-sea hydrothermal regions, were identified as malathion degradators. Two of the tested strains, Pseudidiomarina homiensis strain FG2 and Pseudidiomarina sp. strain CB1, can completely degrade an initial concentration of 500 mg/L malathion within 36 h. Since the two strains have abundant carboxylesterases (CEs) genes, malathion monocarboxylic acid (MMC α and MMC β) and dibasic carboxylic acid were detected as key intermediate metabolites of malathion degradation, and the pathway of malathion degradation between the two strains was identified as a passage from malathion monocarboxylic acid to malathion dicarboxylic acid.
Collapse
Affiliation(s)
- Ling Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofang Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfeng Zhang
- Shenzhen Siyomicro BIO-Tech Co., Ltd., Shenzhen 518116, China
| | - Chaozhi Pan
- Shenzhen Siyomicro BIO-Tech Co., Ltd., Shenzhen 518116, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Microbiology, College of Life Science, Hunan Normal University, 36 Lushan Rd., Yuelu District, Changsha 410081, China
- Correspondence: (L.W.); (Z.D.)
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (L.W.); (Z.D.)
| |
Collapse
|
20
|
Liu X, Zhou M, Sun R, Xing S, Wu T, He H, Chen J, Bielicki JK. Characterization of a Novel Esterase Est33 From an Antarctic Bacterium: A Representative of a New Esterase Family. Front Microbiol 2022; 13:855658. [PMID: 35655995 PMCID: PMC9152352 DOI: 10.3389/fmicb.2022.855658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Studies of microorganisms from extreme environments can sometimes reveal novel proteins with unique properties. Here, we identified a novel esterase gene (Est33) from an Antarctic bacterium. The protein was expressed and purified for biochemical characterizations. Site-mutation variants including S94A, D205A, and H233A were constructed to explore the structure–function relationship of the catalytic triad of Est33, and we found mutating Ser94, Asp205, and His233 residues lead to a complete loss of enzyme activity. In addition, the catalytic Ser94 located in a conserved pentapeptide motif GVSWG. Phylogenetic analysis showed that Est33 and its closely related homologs belonged to an independent group apart from other known family members, indicating that Est33 represented a new family of esterase. The Est33 enzyme was found to be a cold-active esterase retaining 25%–100% activity from 10°C to 30°C and to have optimal catalytic activity toward p-nitrophenol acetate (30°C and pH7.5). The serine modifying reagent phenylmethylsulfonyl fluoride inhibited the activity of Est33 by 77.34%, while thiol reagents such as dithiol threitol (DTT) activated the enzyme by 3-fold. Metal chelating reagents EDTA had no effects, indicating that Est33 is not a metalloenzyme. Collectively, these results indicate that Est33 constitutes the first member of a novel esterase family XXI that has been identified.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rui Sun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jianbin Chen
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - John Kevin Bielicki
- Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
21
|
Dou Z, Jia P, Chen X, Wu Z, Xu G, Ni Y. Structural and mechanistic insights into enantioselectivity toward near-symmetric esters of a novel carboxylesterase RoCE. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A novel carboxylesterase RoCE was identified with relatively high enantioselectivity toward “hard-to-be-discriminated” oxyheterocyclic esters. Molecular basis of enantioselectivity was elucidated and applied in increasing enantioselectivity of RoCE.
Collapse
Affiliation(s)
- Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Peng Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zheng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
22
|
Liu X, Zhou M, Xing S, Wu T, He H, Bielicki JK, Chen J. Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15. Biomolecules 2021; 11:1552. [PMID: 34827549 PMCID: PMC8615396 DOI: 10.3390/biom11111552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Esterases represent an important class of enzymes with a wide variety of industrial applications. A novel hormone-sensitive lipase (HSL) family esterase, Est19, from the Antarctic bacterium Pseudomonas sp. E2-15 is identified, cloned, and expressed. The enzyme possesses a GESAG motif containing an active serine (S) located within a highly conserved catalytic triad of Ser155, Asp253, and His282 residues. The catalytic efficiency (kcat/Km) of Est19 for the pNPC6 substrate is 148.68 s-1mM-1 at 40 °C. Replacing Glu154 juxtaposed to the critical catalytic serine with Asp (E154→D substitution) reduced the activity and catalytic efficiency of the enzyme two-fold, with little change in the substrate affinity. The wild-type enzyme retained near complete activity over a temperature range of 10-60 °C, while ~50% of its activity was retained at 0 °C. A phylogenetic analysis suggested that Est19 and its homologs may represent a new subfamily of HSL. The thermal stability and stereo-specificity suggest that the Est19 esterase may be useful for cold and chiral catalyses.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China;
| | | | - Jianbin Chen
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (S.X.); (T.W.)
| |
Collapse
|
23
|
Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential. World J Microbiol Biotechnol 2021; 37:147. [PMID: 34363544 DOI: 10.1007/s11274-021-03116-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023]
Abstract
Thalassobacillus is a moderately halophilic genus that has been isolated from several sites worldwide, such as hypersaline lakes, saline soils, salt flats, and volcanic mud. Halophilic bacteria have provided functional stable biomolecules in harsh conditions for industrial purposes. Despite its potential biotechnological applications, Thalassobacillus has not been fully characterized yet. This review describes the Thalassobacillus genus, with the few species reported, pointing out its possible applications in enzymes (amylases, cellulases, xylanases, and others), biosurfactants, bioactive compounds, biofuels production, bioremediation, and plant growth promotion. The Thalassobacillus genus represents a little-explored biological resource but with a high potential.
Collapse
|