1
|
Choi S, Jo J, Park J, Kim S, Jeong S, Jeong SY, Jung SH, Choi E, Kim H. Stimuli-responsive, methyl cellulose-based, interpenetrating network hydrogels: Non-covalent design, injectability, and controlled release. Carbohydr Polym 2025; 347:122689. [PMID: 39486930 DOI: 10.1016/j.carbpol.2024.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
This paper demonstrates the molecular design of stimuli-responsive, methyl cellulose-based, injectable hydrogels consisting of two orthogonal supramolecular networks. Rapidly injectable hydrogels that undergo autonomous gelation without permanent cross-links are crucial for biomedical applications due to minimal invasiveness, adaptability to irregular target sites, and precise spatiotemporal control. However, they often lack sufficient mechanical strength, physicochemical stability, and high biocompatibility. Herein, we develop a molecular design of a non-covalent double-network system by strategically incorporating specific host-guest cross-linking sites into a thermo-responsive network, which is reinforced by interpenetration with a cellulose-based network via their sequential formation. The resulting hydrogel, composed of non-cytotoxic materials, demonstrates high cell viability (>90 %) until its concentration of 25 mg mL-1, rapid self-healing within 1 min, suitable injection pressure (1.1 kPa), and drug release behavior controllable by heat, chemicals, or ultrasound. Therefore, the hydrogel could be loaded with diclofenac (3.5 mg mL-1), a non-steroidal anti-inflammatory drug, and treat osteoarthritis when injected into a rat knee joint, achieving results comparable to those in a control group without osteoarthritis. This system thus holds promise for the delivery of various drugs as a responsive vector, offering synergistic effects via the inclusion of functional polymeric networks or exogenous additives for bio- or environment-related applications.
Collapse
Affiliation(s)
- Seoyeon Choi
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Juyeong Jo
- Korea Institute of Medical Microrobotics (KIMIRo), Gwangju 61011, Republic of Korea
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seokjae Kim
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Korea Institute of Medical Microrobotics (KIMIRo), Gwangju 61011, Republic of Korea
| | - Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seo Yoon Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Se Hoon Jung
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Korea Institute of Medical Microrobotics (KIMIRo), Gwangju 61011, Republic of Korea.
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Chettri D, Chirania M, Boro D, Verma AK. Glycoconjugates: Advances in modern medicines and human health. Life Sci 2024; 348:122689. [PMID: 38710281 DOI: 10.1016/j.lfs.2024.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Manisha Chirania
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Deepjyoti Boro
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India.
| |
Collapse
|
3
|
Pei D, Zeng Z, Geng Z, Cai K, Lu D, Guo C, Guo H, Huang J, Gao B, Yu S. Modulation of macrophage polarization by secondary cross-linked hyaluronan-dopamine hydrogels. Int J Biol Macromol 2024; 270:132417. [PMID: 38759857 DOI: 10.1016/j.ijbiomac.2024.132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The inflammatory response plays a critical role in standard tissue repair processes, wherein active modulation of macrophage polarization is necessary for wound healing. Dopamine, a mussel-inspired bioactive material, is widely involved in wound healing, neural/bone/myocardial regeneration, and more. Recent studies indicated that dopamine-modified biomaterials can potentially alter macrophages polarization towards a pro-healing phenotype, thereby enhancing tissue regeneration. Nevertheless the immunoregulatory activity of dopamine on macrophage polarization remains unclear. This study introduces a novel interpenetrating hydrogel to bridge this research gap. The hydrogel, combining varying concentrations of oxidized dopamine with hyaluronic acid hydrogel, allows precise regulation of mechanical properties, antioxidant bioactivity, and biocompatibility. Surprisingly, both in vivo and in vitro outcomes demonstrated that dopamine concentration modulates macrophage polarization, but not linearly. Lower concentration (2 mg/mL) potentially decrease inflammation and facilitate M2 type macrophage polarization. In contrast, higher concentration (10 mg/mL) exhibited a pro-inflammatory tendency in the late stages of implantation. RNA-seq analysis revealed that lower dopamine concentrations induced the M1/M2 transition of macrophages by modulating the NF-κB signaling pathway. Collectively, this research offers valuable insights into the immunoregulation effects of dopamine-integrated biomaterials in tissue repair and regeneration.
Collapse
Affiliation(s)
- Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China
| | - Zhijie Geng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Kehan Cai
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2008, Australia; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Cuiping Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Huilong Guo
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China.
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China; Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China.
| |
Collapse
|
4
|
Ohno Y, Toshino M, Mohammed AFA, Fujiwara Y, Komohara Y, Onodera R, Higashi T, Motoyama K. Mannose-methyl-β-cyclodextrin suppresses tumor growth by targeting both colon cancer cells and tumor-associated macrophages. Carbohydr Polym 2023; 305:120551. [PMID: 36737200 DOI: 10.1016/j.carbpol.2023.120551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Methylated β-cyclodextrin (MβCD) can extract cholesterol from lipid rafts and induce apoptosis in cancer cells by inhibiting activation of the PI3K-Akt-Bad pathway. In this study, we modified MβCD with mannose (Man-MβCD) and assessed its in vitro and in vivo potential for targeting colon cancer cells expressing the mannose receptor (MR) and tumor-associated macrophages (TAM). Man-MβCD showed a significantly greater level of cellular association with colon-26 cells and M2 macrophages, and much more prominent anticancer activity than that of MβCD against MR-positive colon-26 cells. These results revealed that autophagy was the main mechanism of cell death associated with Man-MβCD. Furthermore, compared with MβCD, Man-MβCD significantly reduced tumor development following intravenous delivery to tumor-bearing mice, with no apparent side effects. Thus, Man-MβCD has the potential to be a novel anticancer drug.
Collapse
Affiliation(s)
- Yoshitaka Ohno
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Cross-disciplinary Doctoral Human Resource Development Program to Lead the Well-being Society, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Maiko Toshino
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ahmed F A Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Yukio Fujiwara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yoshihiro Komohara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
5
|
He WY, Wang XC, Gong W, Huang HB, Hou YY, Wang R, Hu JN. Construction of an antibacterial hydrogel based on diammonium glycyrrhizinate and gallic acid for bacterial- infected wound healing. Colloids Surf B Biointerfaces 2023; 222:112975. [PMID: 36442387 DOI: 10.1016/j.colsurfb.2022.112975] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
The current antibacterial wound dressings with antibiotic substances or metal bactericidal agents may lead to severe multidrug resistance and poor biocompatibilities. Herein, we report an inherent antibacterial hydrogel constructed by only two naturally small molecules gallic acid (GA) and diammonium glycyrrhizinate (DG) for promoting Staphylococcus aureus (S. aureus)-infected wound healing. The resultant GAD hydrogel can be fabricated by co-assembly of these two materials through simple steps. Thanks to the incorporation of GA and DG, GAD hydrogel enabled a strong mechanical performance and great self-healing property with a sustained-release of drugs into skin wounds. Moreover, the cell viability assays showed that GAD hydrogel had good cytocompatibility by promoting cell proliferation and migration. In addition, GAD hydrogel had broad antibacterial efficiency against both Gram-positive and Gram-negative bacteria. Taken together, GAD hydrogel is a promising dressing to accelerate bacterial-infected wound healing through reconstructing an intact and thick epidermis without antibiotics or cytokines.
Collapse
Affiliation(s)
- Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Gong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Yang Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Xie X, Wu Q, Liu Y, Chen C, Chen Z, Xie C, Song M, Jiang Z, Qi X, Liu S, Tang Z, Wu Z. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol 2022; 10:1066266. [PMID: 36605251 PMCID: PMC9808043 DOI: 10.3389/fbioe.2022.1066266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Small-diameter vascular grafts (diameter <6 mm) are in high demand in clinical practice. Neointimal hyperplasia, a common complication after implantation of small-diameter vascular grafts, is one of the common causes of graft failure. Modulation of local inflammatory responses is a promising strategy to attenuates neointimal hyperplasia. Vascular endothelial growth factor (VEGF) is an angiogenesis stimulator that also induces macrophage polarization and modulates inflammatory responses. In the present study, we evaluated the effect of VEGF on the neointima hyperplasia and local inflammatory responses of decellularized vascular grafts. In the presence of rhVEGF-165 in RAW264.6 macrophage culture, rhVEGF-165 induces RAW264.6 macrophage polarization to M2 phenotype. Decellularized bovine internal mammary arteries were implanted into the subcutaneous and infrarenal abdominal aorta of New Zealand rabbits, with rhVEGF-165 applied locally to the adventitial of the grafts. The vascular grafts were removed en-bloc and submitted to histological and immunofluorescence analyses on days 7 and 28 following implantation. The thickness of the fibrous capsule and neointima was thinner in the VEGF group than that in the control group. In the immunofluorescence analysis, the number of M2 macrophages and the ratio of M2/M1 macrophages in vascular grafts in the VEGF group were higher than those in the control group, and the proinflammatory factor IL-1 was expressed less than in the control group, but the anti-inflammatory factor IL-10 was expressed more. In conclusion, local VEGF administration attenuates neointimal hyperplasia in decellularized small-diameter vascular grafts by inducing macrophage M2 polarization and modulating the inflammatory response.
Collapse
Affiliation(s)
- Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiying Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeguo Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, Hunan, China,*Correspondence: Zhongshi Wu,
| |
Collapse
|
7
|
Wang Y, Zhong D, Xie F, Chen S, Ma Z, Yang X, Iqbal MZ, Zhang Q, Lu J, Wang S, Zhao R, Kong X. Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomater Sci Eng 2022; 8:1930-1941. [PMID: 35380774 DOI: 10.1021/acsbiomaterials.2c00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inorganic nanomaterials showed great potential as drug carriers for chemotherapeutics molecules due to their biocompatible physical and chemical properties. A manganese-based inorganic nanomaterial manganese phosphate (MnP) had become a new drug carrier in cancer therapy. However, the approach for manganese phosphate preparation and drug integration is still confined in complex methods. Inspired by mimetic mineralization, we proposed a "one-step" method for the preparation of manganese phosphate-doxorubicin (DOX) nanomedicines (MnP-DOX) by manganese ion and DOX complexation. The structural characterization results revealed that the prepared MnP-DOX nanocomplexes were homogeneous with controlled sizes and shapes. More importantly, the MnP-DOX nanocomposites could significantly induce cancer inhibition in vitro and in vivo. The results indicated that the drug molecules were integrated into MnP nanocarriers by mimetic mineralization, which not only prevented the premature release of the drug but also reduced excessive modification. Moreover, the designed MnP-DOX complex showed high loading efficacy and pH-dependent degradation leading to drug release, achieving high efficiency for cancer chemotherapy in vitro and in vivo via a facile process. These achievements presented an approach to construct the manganese phosphate-based chemotherapy nanomedicines by mimetic mineralization for cancer therapy.
Collapse
Affiliation(s)
- Yuxin Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Daliang Zhong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Fan Xie
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Siying Chen
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xinyan Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 311399, China
| | - M Zubair Iqbal
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Quan Zhang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Ruibo Zhao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
8
|
Song L, Zhou L, Li B, Zhang H. Fullerene-containing pillar[ n]arene hybrid composites. Org Biomol Chem 2022; 20:8176-8186. [DOI: 10.1039/d2ob01664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The construction and application of fullerene-containing pillar[n]arene organic–inorganic hybrid composites/systems has been discussed and summarized.
Collapse
Affiliation(s)
- Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|