1
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2025; 45:766-787. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Paixão SM, Silva TP, Salgado F, Alves L. Strawberry Tree Fruit Residue as Carbon Source Towards Sustainable Fuel Biodesulfurization by Gordonia alkanivorans Strain 1B. Molecules 2025; 30:2137. [PMID: 40430310 PMCID: PMC12114536 DOI: 10.3390/molecules30102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Biodesulfurization (BDS) is a clean technology that uses microorganisms to efficiently remove sulfur from recalcitrant organosulfur compounds present in fuels (fossil fuels or new-generation fuels resulting from pyrolysis and hydrothermal liquefaction). One of the limitations of this technology is the low desulfurization rates. These result in the need for greater amounts of biocatalyst and lead to increased production costs. To mitigate this issue, several approaches have been pursued, such as the use of alternative carbon sources (C-sources) from agro-industrial waste streams or the co-production of high-added-value products by microorganisms. The main goal of this work is to assess the potential of strawberry tree fruit residue (STFr) as an alternative C-source for a BDS biorefinery using Gordonia alkanivorans strain 1B, a well-known desulfurizing bacterium with high biotechnological potential. Hence, the first step was to produce sugar-rich liquor from the STFr and employ it in shake-flask assays to evaluate the influence of different pretreatments (treatments with 1-4% activated charcoal for prior phenolics removal) on metabolic parameters and BDS rates. Afterwards, the liquor was used as the C-source in chemostat assays, compared to commercial sugars, to develop and optimize the use of STFr-liquor as a viable C-source towards cost-effective biocatalyst production. Moreover, the high-market-value bioproducts simultaneously produced during microbial growth were also evaluated. In this context, the best results, considering both the production of biocatalysts with BDS activity and simultaneous bioproduct production (carotenoids and gordofactin biosurfactant/bioemulsifier) were achieved when strain 1B was cultivated in a chemostat with untreated STFr-liquor (5.4 g/L fructose + glucose, 6:4 ratio) as the C-source and in a sulfur-free mineral-minimized culture medium at a dilution rate of 0.04 h-1. Cells from this steady-state culture (STFr L1) achieved the highest desulfurization with 250 mM of dibenzothiophene as a reference organosulfur compound, producing a maximum of ≈213 mM of 2-hydroxibyphenil (2-HBP) with a corresponding specific rate (q2-HBP) of 6.50 µmol/g(DCW)/h (where DCW = dry cell weight). This demonstrates the potential of STFr as a sustainable alternative C-source for the production of cost-effective biocatalysts without compromising BDS ability. Additionally, cells grown in STFr L1 also presented the highest production of added-value products (338 ± 15 µg/g(DCW) of carotenoids and 8 U/mL of gordofactin). These results open prospects for a future G. alkanivorans strain 1B biorefinery that integrates BDS, waste valorization, and the production of added-value products, contributing to the global economic viability of a BDS process and making BDS scale-up a reality in the near future.
Collapse
Affiliation(s)
- Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
- Departamento de Alterações Climáticas, APA—Agência Portuguesa do Ambiente, Rua da Murgueira 9, 2610-124 Amadora, Portugal
| | - Francisco Salgado
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal
| |
Collapse
|
3
|
Tavares J, Paixão SM, Silva TP, Alves L. New Insights on Gordonia alkanivorans Strain 1B Surface-Active Biomolecules: Gordofactin Properties. Molecules 2024; 30:1. [PMID: 39795060 PMCID: PMC11720751 DOI: 10.3390/molecules30010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, Gordonia alkanivorans strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer. This study focuses on the characterization of the properties of the lipoglycopeptide BSs/BEs produced by strain 1B, henceforth referred to as gordofactin, to better understand its potential and future applications. Strain 1B was cultivated in a chemostat using fructose as a carbon source to stimulate gordofactin production, and different purification methods were tested. The most purified sample, designated as extracted gordofactin, after lyophilization, presented a specific emulsifying activity of 9.5 U/mg and a critical micelle concentration of 13.5 mg/L. FT-IR analysis revealed the presence of basic hydroxyl, carboxyl, ether, amine/amide functional groups, and alkyl aliphatic chains, which is consistent with its lipoglycopeptide nature (60% lipids, 19.6% carbohydrates, and 9% proteins). Gordofactin displayed remarkable stability and retained emulsifying activity across a broad range of temperatures (30 °C to 80 °C) and pH (pH 3-12). Moreover, a significant tolerance of gordofactin emulsifying activity (EA) to a wide range of NaCl concentrations (1 to 100 g/L) was demonstrated. Although with a great loss of EA in the presence of NaCl concentrations above 2.5%, gordofactin could still tolerate up to 100 g/L NaCl, maintaining about 16% of its initial EA for up to 7 days. Furthermore, gordofactin exhibited growth inhibition against both Gram-positive and Gram-negative bacteria, and it demonstrated concentration-dependent free radical scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (IC50 ≈ 1471 mg/L). These promising features emphasize the robustness and potential of gordofactin as an eco-friendly BS/BE alternative to conventional surfactants/emulsifiers for different industrial applications.
Collapse
Affiliation(s)
- João Tavares
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
- RCM2+–Centro de Investigação em Gestão de Ativos e Engenharia de Sistemas, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Susana M. Paixão
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Tiago P. Silva
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade de Bioenergia e Biorrefinarias, LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
4
|
Markam SS, Raj A, Kumar A, Khan ML. Microbial biosurfactants: Green alternatives and sustainable solution for augmenting pesticide remediation and management of organic waste. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100266. [PMID: 39257939 PMCID: PMC11385824 DOI: 10.1016/j.crmicr.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Pesticide pollution remains a significant environmental challenge, necessitating the exploration of sustainable alternatives. Biosurfactants are a class of unconventional surface-active chemicals that are produced by microorganisms. Biosurfactants have many applications in treating oil spills, emulsifiers, pharmaceuticals, and agriculture. Compared to chemical surfactants, they have benefits such as biodegradability, less toxicity, and a greener option because they are derived from microbes. Biosurfactants have recently been shown to have the potential to speed up pesticide cleanup. Biosurfactants are used in pesticide remediation because of their exceptional foaming ability, high selectivity, and wide range of pH, salinity, and temperature operating windows. Microbial biosurfactants emerged as potential agents for the treatment of organic waste and agricultural residue. This review unfolds the promising realm of microbial biosurfactants as green solutions for environmental sustainability, particularly in agricultural practices, with special reference to pesticide remediation. This article highlights the escalating need for eco-friendly alternatives, paving the way for discussing biosurfactants. Moreover, the articles discuss in detail various advancements in the field of rapid screening of biosurfactants, either using a conventional approach or via advanced instruments such as GC-MS, HPLC, NMR, FTIR, etc. Furthermore, the article unveils the molecular mechanisms and the microbial genes driving biosurfactant synthesis, offering insights into enhancing production efficiency. Moreover, the article explores diverse applications of microbial biosurfactants in sustainable agriculture, ranging from soil remediation to crop protection. The article also highlights the various functions of microbial biosurfactants for enhancing the decomposition and recycling of organic waste and agricultural residues, emphasizing their potential for sustainable waste management strategies. Overall, the review underscores the pivotal role of microbial biosurfactants as green alternatives for addressing pesticide pollution and advancing environmental sustainability.
Collapse
Affiliation(s)
- Shiv Shankar Markam
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, Uttar Pradesh, India
| | - Mohammed Latif Khan
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
5
|
Silva TP, Paixão SM, Tavares J, Paradela F, Crujeira T, Roseiro JC, Alves L. Streamlining the biodesulfurization process: development of an integrated continuous system prototype using Gordonia alkanivorans strain 1B. RSC Adv 2024; 14:725-742. [PMID: 38173596 PMCID: PMC10758933 DOI: 10.1039/d3ra07405f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biodesulfurization is a biotechnological process that uses microorganisms as biocatalysts to actively remove sulfur from fuels. It has the potential to be cleaner and more efficient than the current industrial process, however several bottlenecks have prevented its implementation. Additionally, most works propose models based on direct cultivation on fuel, or batch production of biocatalysts followed by a processing step before application to batch biodesulfurization, which are difficult to replicate at a larger scale. Thus, there is a need for a model that can be adapted to a refining process, where fuel is being continuously produced to meet consumer needs. The main goal of this work was to develop the first bench-scale continuous biodesulfurization system that integrates biocatalyst production, biodesulfurization and fuel separation, into a single continuous process, taking advantage of the method for the continuous production of the biodesulfurization biocatalysts previously established. This system eliminates the need to process the biocatalysts and facilitates fuel separation, while mitigating some of the process bottlenecks. First, using the bacterium Gordonia alkanivorans strain 1B, continuous culture conditions were optimized to double biocatalyst production, and the produced biocatalysts were applied in batch biphasic biodesulfurization assays for a better understanding of the influence of different factors. Then, the novel integrated system was developed and evaluated using a model fuel (n-heptane + dibenzothiophene) in continuous biodesulfurization assays. With this system strain 1B surpassed its highest biodesulfurization rate, reaching 21 μmol h-1 g-1. Furthermore, by testing a recalcitrant model fuel, composed of n-heptane with dibenzothiophene and three alkylated derivatives (with 109 ppm of sulfur), 72% biodesulfurization was achieved by repeatedly passing the same fuel through the system, maintaining a constant response throughout sequential biodesulfurization cycles. Lastly, the system was also tested with real fuels (used tire/plastic pyrolysis oil; sweet and sour crude oils), revealing increased desulfurization activity. These results highlight the potential of the continuous biodesulfurization system to accelerate the transition from bench to commercial scale, contributing to the development of biodesulfurization biorefineries, centered on the valorization of sulfur-rich residues/biomasses for energy production.
Collapse
Affiliation(s)
- Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Filipe Paradela
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Teresa Crujeira
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - José C Roseiro
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias Estrada do Paço do Lumiar, 22 1649-038 Portugal
| |
Collapse
|
6
|
Tavares J, Silva TP, Paixão SM, Alves L. Development of a bench-scale photobioreactor with a novel recirculation system for continuous cultivation of microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117418. [PMID: 36753845 DOI: 10.1016/j.jenvman.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation can be used to increase the sustainability of carbon emitting processes, converting the CO2 from exhaust gases into fuels, food and chemicals. Many of the carbon emitting industries operate in a continuous manner, for periods that can span days or months, resulting in a continuous stream of gas emissions. Biogenic CO2 from industrial microbiological processes is one example, since in many cases it becomes unsustainable to stop these processes on a daily or weekly basis. To correctly sequester these emissions, microalgae systems must be operated under continuous constant conditions, requiring photobioreactors (PBRs) that can act as chemostats for long periods of time. However, in order to optimize culture parameters or study metabolic responses, bench-scale setups are necessary. Currently there is a lack of studies and design alternatives using chemostat, since most works focus on batch assays or semi-continuous cultures. Therefore, this work focused on the development of a continuous bench-scale PBR, which combines a retention vessel, a photocollector and a degasser, with an innovative recirculation system, that allows it to operate as an autotrophic chemostat, to study carbon sequestration from a biogenic CO2-rich constant air stream. To assess its applicability, the PBR was used to cultivate the green microalga Haematococcus pluvialis using as sole carbon source the CO2 produced by a coupled heterotrophic bacterial chemostat. An air stream containing ≈0.35 vol% of CO2, was fed to the system, and it was evaluated in terms of stability, carbon fixation and biomass productivity, for dilution rates ranging from 0.1 to 0.5 d-1. The PBR was able to operate under chemostat conditions for more than 100 days, producing a stable culture that generated proportional responses to the stimuli it was subjected to, attaining a maximum biomass productivity of 183 mg/L/d with a carbon fixation efficiency of ≈39% at 0.3 d-1. These results reinforce the effectiveness of the developed PBR system, making it suitable for laboratory-scale studies of continuous photoautotrophic microalgae cultivation.
Collapse
Affiliation(s)
- João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
7
|
P. Silva T, M. Paixão S, S. Fernandes A, C. Roseiro J, Alves L. New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gordonia alkanivorans strain 1B is a desulfurizing bacterium and a hyper-pigment producer. Most carotenoid optimization studies have been performed with light, but little is still known on how carbon/sulfur-source concentrations influence carotenoid production under darkness. In this work, a surface response methodology based on a two-factor Doehlert distribution (% glucose in a glucose/fructose 10 g/L mixture; sulfate concentration) was used to study carotenoid and biomass production without light. These responses were then compared to those previously obtained under light. Moreover, carbon consumption was also monitored, and different metabolic parameters were further calculated. The results indicate that both light and glucose promote slower growth rates, but stimulate carotenoid production and carbon conversion to carotenoids and biomass. Fructose induces higher growth rates, and greater biomass production at 72 h; however, its presence seems to inhibit carotenoid production. Moreover, although at a much lower yield than under light, results demonstrate that under darkness the highest carotenoid production can be achieved with 100% glucose (10 g/L), ≥27 mg/L sulfate, and high growth time (>216 h). These results give a novel insight into the metabolism of strain 1B, highlighting the importance of culture conditions optimization to increase the process efficiency for carotenoid and/or biomass production.
Collapse
|