1
|
Yang Y, Lin M, Sun M, Zhang GQ, Guo J, Li J. Nanotechnology boosts the efficiency of tumor diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1249875. [PMID: 37576984 PMCID: PMC10419217 DOI: 10.3389/fbioe.2023.1249875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence and mortality of cancer are gradually increasing. The highly invasive and metastasis of tumor cells increase the difficulty of diagnosis and treatment, so people pay more and more attention to the diagnosis and treatment of cancer. Conventional treatment methods, including surgery, radiotherapy and chemotherapy, are difficult to eliminate tumor cells completely. And the emergence of nanotechnology has boosted the efficiency of tumor diagnosis and therapy. Herein, the research progress of nanotechnology used for tumor diagnosis and treatment is reviewed, and the emerging detection technology and the application of nanodrugs in clinic are summarized and prospected. The first part refers to the application of different nanomaterials for imaging in vivo and detection in vitro, which includes magnetic resonance imaging, fluorescence imaging, photoacoustic imaging and biomarker detection. The distinctive physical and chemical advantages of nanomaterials can improve the detection sensitivity and accuracy to achieve tumor detection in early stage. The second part is about the nanodrug used in clinic for tumor treatment. Nanomaterials have been widely used as drug carriers, including the albumin paclitaxel, liposome drugs, mRNA-LNP, protein nanocages, micelles, membrane nanocomplexes, microspheres et al., which could improve the drug accumulate in tumor tissue through enhanced permeability and retention effect to kill tumor cells with high efficiency. But there are still some challenges to revolutionize traditional tumor diagnosis and anti-drug resistance based on nanotechnology.
Collapse
Affiliation(s)
| | | | | | | | - Jianshuang Guo
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| | - Jianheng Li
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
2
|
Jiang P, Liang B, Zhang Z, Fan B, Zeng L, Zhou Z, Mao Z, Xu Q, Yao W, Shen Q. New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment. RSC Adv 2023; 13:19540-19564. [PMID: 37388143 PMCID: PMC10300523 DOI: 10.1039/d3ra03099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Lung cancer is caused by a malignant tumor that shows the fastest growth in both incidence and mortality and is also the greatest threat to human health and life. At present, both in terms of incidence and mortality, lung cancer is the first in male malignant tumors, and the second in female malignant tumors. In the past two decades, research and development of antitumor drugs worldwide have been booming, and a large number of innovative drugs have entered clinical trials and practice. In the era of precision medicine, the concept and strategy of cancer from diagnosis to treatment are experiencing unprecedented changes. The ability of tumor diagnosis and treatment has rapidly improved, the discovery rate and cure rate of early tumors have greatly improved, and the overall survival of patients has benefited significantly, with a tendency to transform to a chronic disease with tumor. The emergence of nanotechnology brings new horizons for tumor diagnosis and treatment. Nanomaterials with good biocompatibility have played an important role in tumor imaging, diagnosis, drug delivery, controlled drug release, etc. This article mainly reviews the advancements in lipid-based nanosystems, polymer-based nanosystems, and inorganic nanosystems in the diagnosis and treatment of non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Piao Jiang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- The First Clinical Medical College, Nanchang University Nanchang China
| | - Bin Liang
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Quan Xu
- Department of Thoracic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College No. 152 Aiguo Road, Donghu District Nanchang 330006 China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College Nanchang China
| |
Collapse
|
3
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
4
|
Qin S, Li J, Pan Z, Wang C, Zhang BF. Targeted paclitaxel prodrug nanoassemblies to improve therapeutic effects for liver cancer. Colloids Surf B Biointerfaces 2023; 226:113285. [PMID: 37028229 DOI: 10.1016/j.colsurfb.2023.113285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Prodrug nanoassemblies fabricated by anticancer drug conjugates exhibited more advantages in controlled drug release and bioavailability and favorable antitumor efficacy. In this paper, lactobionic acid (LA) was connected with polyethylene glycol through amido linkages, and paclitaxel was joined with polyethylene glycol by means of ester bonds to form the prodrug copolymer LA-PEG-PTX. Then, LA-PEG-PTX was automatically assembled into LA-PEG-PTX nanoparticles (LPP NPs) by dialysis. The LPP NPs had a relatively uniform size of approximately 200 nm, a negative potential (-13.68 mV), and a spherical shape under TEM. The drug loading of LPP NPs was 3.91%, which was measured by HPLC. The in vitro release profile of LPP NPs exhibited a sustained release feature. The results of the pharmacokinetic test in rats showed that LPP NPs had higher T1/2 and AUC values than the control group (free PTX) and a prolonged in vivo circulation time, thus increasing the bioavailability of PTX. Remarkably, the LPP NPs were absorbed into HepG2 cells after galactose-directed internalization and enhanced cytotoxicity. Consequently, LPP NPs displayed notable antitumor activity in Kunming mice with H22 hepatocellular carcinoma. Collectively, these findings suggested that paclitaxel prodrug-based self-assembled nanoparticles were a promising alternative for improving the bioavailability and antitumor effect of PTX.
Collapse
|
5
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|