1
|
Lee TY, Lee YS, Wu CP, Weng BC, Chen KL. Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids. Animals (Basel) 2025; 15:1324. [PMID: 40362139 PMCID: PMC12071083 DOI: 10.3390/ani15091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
This study focused on the physicochemical characteristics of the fermented products (FP) produced by Bacillus amyloliquefaciens CU33 (CU33) from soybean meal with 70% moisture. Additionally, it investigated the effects of adding FP to starter on the growth performance, general health performance, blood clinical biochemistry, and immunity of Alpine goat kids during the weaning period. Forty 14-day-old male Alpine goat kids were randomly assigned into starter supplementations of 0, 0.1, 0.3, or 0.5% CU33 FP for 8 weeks, and each goat kid was individually raised in stainless steel cage (width 70 cm × height 70 cm × depth 80 cm). The moisture after fermentation was linearly decreased as fermentation time increased (p < 0.05), and the pH value and Bacillus-like counts reached the highest at 24 h of fermentation. The activity of neutral protease and alkaline protease, the content of surfactin and γ-PGA, the viscosity, and the odor of CU33 FP were linearly increased as fermentation time increased (p < 0.05). The neutral protease activity, surfactin, γ-PGA, and viscosity increased after drying, whereas the moisture, pH value, Bacillus-like counts, and odor decreased (p < 0.05). During the pre-weaning period (0-4 weeks), the body weight gain (BWG) of the 0.1% CU33 FP group was higher than that of the control group (p < 0.05), and all CU33 FP groups showed a better feed conversion ratio (FCR) than the control group (p < 0.05). During the post-weaning period (4-8 weeks) and throughout the entire experimental period (0-8 weeks), the BWG and FCR of all CU33 FP groups were better than those of the control group (p < 0.05). Furthermore, both BWG and FCR improved linearly as the dietary level of CU33 FP increased (p < 0.05). Simultaneously, the fecal consistency index at 0-4 and 4-8 weeks and the coliform counts in the rectum at 4 weeks linearly decreased (p < 0.05), and the Bacillus-like counts in the rectum linearly increased at 4 and 8 weeks (p < 0.05). Phosphorous (P), total protein (TP), blood urea nitrogen (BUN) in serum at 8 weeks, and the oxidative burst capacity at 4 weeks linearly increased as the dietary level of CU33 FP increased, but the skin sensitization test showed a quadratic curve, and the 0.1% CU33 FP group had the lowest performance (p < 0.05). In conclusion, dietary supplementation with 0.1% of CU33 FP can improve the growth performance, diarrhea status, and oxidative burst capacity of Alpine goat kids, showing the potential to be a feed additive.
Collapse
Affiliation(s)
- Tsung-Yu Lee
- Animal Nutrition Division, Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan 712009, Taiwan;
| | | | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi 600355, Taiwan;
| | - Bor-Chun Weng
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 600355, Taiwan;
| | - Kuo-Lung Chen
- Department of Animal Science, National Chiayi University, Chiayi 600355, Taiwan;
| |
Collapse
|
2
|
Liu Z, Lin H, Zhu X, Wu X, Wu C, Obajemihi OI, Liu X, Su W, Liu G, Li Y, Xu X, Yang J, Sun Q. Characterization of the extracellular proteases from Bacillus inaquosorum strain E1-8 and its application in the preparation of hydrolysates from plant and animal proteins with antioxidant, antifreeze and anti-browning properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:866-877. [PMID: 39253993 DOI: 10.1002/jsfa.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Bacillus inaquosorum strains is widely recognized for their plant-growth-promoting and biocontrol capabilities, yet their roles in protease production remain unclear. The present study aimed to comprehensively assess the protease-producing performance of B. inaquosorum strain E1-8, at the same time as exploring the novel application of agricultural Bacillus proteases in the preparation of protein hydrolysates for fresh-cut fruits preservation. RESULTS First, genomic sequencing revealed the diversity of E1-8 proteases, indicating 15 putative extracellular proteases. Subsequently, the fermentation conditions for E1-8 protease production were optimized, with sweet potato powder and soybean meal identified as the most suitable carbon and nitrogen sources, respectively, resulting in a maximum protease activity of 321.48 U mL-1. Upon culturing the strain under these optimized conditions, only an S8 family serine protease and an M48 family metalloprotease were revealed by secretomic analysis and protease inhibitor assays. Additionally, the optimal protease conditions for generating protein hydrolysates from soy, pea, fish and porcine proteins were determined. The molecular weight of the hydrolysates primarily ranged from 2000 to 180 Da, with a total of 17 amino acids identified. The application of these hydrolysates demonstrated a 2,2-diphenyl-1-picrylhydrazyl (i.e. DPPH) scavenging activity ranging from 58.64% to 84.12%, significantly reducing of the melting peaks and the freezing points. Furthermore, the browning index of apple slices stored at 4 °C decreased by 14.81% to 22.15% on the second day, and similar effects were observed in fresh-cut banana stored at 4 °C for 7 days. CONCLUSION The protein hydrolysates obtained exhibit remarkable antioxidant, antifreeze and anti-browning properties for fresh-cut fruits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyun Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Huawei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xueying Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chenxi Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | | - Xinyi Liu
- Royal Agricultural University Joint Institute for Advanced Agritechnology at QAU, Qingdao Agricultural University, Qingdao, China
| | - Wenrui Su
- Royal Agricultural University Joint Institute for Advanced Agritechnology at QAU, Qingdao Agricultural University, Qingdao, China
| | - Guangchao Liu
- College of Life Science, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Lin H, Han T, Wang J, Ma Z, Yu X. Screening and Identification of a Strain with Protease and Phytase Activities and Its Application in Soybean Meal Fermentation. Appl Biochem Biotechnol 2024; 196:790-803. [PMID: 37204550 DOI: 10.1007/s12010-023-04568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The aims of the study were to degrade the anti-nutritional factors (ANFs) such as phytic acid, glycinin, and β-conglycinin and improve the values of soybean meal (SBM). Firstly, in this study, a strain PY-4B which exhibited the best enzymatic activities of protease (403.3 ± 17.8 U/mL) and phytase (62.9 ± 2.9 U/mL) was isolated and screened among the isolates. Based on the analysis of physiological and biochemical characteristics and 16S rDNA sequence, the strain PY-4B was identified and named as Pseudomonas PY-4B. Next, Pseudomonas PY-4B was applied to fermentation of SBM. The results showed that the contents of glycinin and β-conglycinin were decreased by 57-63%, and the phytic acid was remarkably degraded by 62.5% due to the fermentation of SBM by Pseudomonas PY-4B. The degradation of glycinin and β-conglycinin resulted in increase of contents of water-soluble proteins and amino acids in fermented SBM. Moreover, Pseudomonas PY-4B exhibited no hemolytic activity and slight inhibitory effect on the growth of pathogen Staphylococcus aureus and the wide range of pH tolerance (3 to 9). In summary, our study indicates that isolated strain Pseudomonas PY-4B is a safe and applicable strain and has the ability to effectively degrade the ANFs (phytic acid, glycinin, and β-conglycinin) in SBM by fermentation.
Collapse
Affiliation(s)
- Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| |
Collapse
|
4
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|