1
|
Wang M, Zhang Y, Ni S, Sun M, Wu Q, Wu X, Chen Q, Wang S. The anti-cancer activity of Dioscin: an update and future perspective. Med Oncol 2025; 42:63. [PMID: 39899128 PMCID: PMC11790812 DOI: 10.1007/s12032-024-02572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 02/04/2025]
Abstract
Natural drugs have the advantages of multi-pathway, multi-target, low toxicity, and high efficiency, which make them widely used and effective in anti-tumor therapy. Dioscin is a steroidal saponin compound that can be extracted from Dioscaceae plants. In recent years, it has been found that Dioscin has potent anti-tumor effects, can inhibit tumor cell proliferation, induce apoptosis and autophagy, inhibits tumor cell metastasis, reverses multidrug resistance, and increases sensitivity to anticancer drugs, and thus inhibit tumor progression. Meanwhile, the construction of Dioscin nanocarriers can improve the efficiency of drug use, reduce drug toxicity, realize the precise delivery of drugs, and improve the bioavailability of Dioscin. In this paper, the anticancer mechanism and targets of Dioscin in recent years were reviewed, thereby providing new ideas and a theoretical basis for further research and promotion of Dioscin.
Collapse
Affiliation(s)
- MengYue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - YaNan Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - SongLin Ni
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Mo Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - QiaoLan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - XiaoLin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qian Chen
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
2
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Wang Z, Fu S, Guo Y, Han Y, Ma C, Li R, Yang X. Classification and design strategies of polysaccharide-based nano-nutrient delivery systems for enhanced bioactivity and targeted delivery: A review. Int J Biol Macromol 2024; 256:128440. [PMID: 38016614 DOI: 10.1016/j.ijbiomac.2023.128440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Since many nutrients are highly sensitive, they cannot be absorbed and utilized efficiently by the body. Using nano-delivery systems to encapsulate nutrients is an effective method of solving the problems associated with the application of nutrients at this stage. Polysaccharides, as natural biomaterials, have a unique chemical structure, ideal biocompatibility, biodegradability and low immunogenicity. This makes polysaccharides powerful carriers that can enhance the biological activity of nutrients. However, the true role of polysaccharide-based delivery systems requires an in-depth understanding of the structural and physicochemical characteristics of polysaccharide-based nanodelivery systems, as well as effective modulation of the intestinal delivery mechanism and the latest advances in nano-encapsulation. This review provides an overview of polysaccharide-based nano-delivery systems dependent on different carrier types, emphasizing recent advances in the application of polysaccharides, a biocomposite material designed for nutrient delivery systems. Strategies for polysaccharide-based nano-delivery systems to enhance the bioavailability of orally administered nutrients from the perspective of the intestinal absorption barrier are presented. Characterization methods for polysaccharide-based nano-delivery systems are presented as well as an explanation of the formation mechanisms behind nano-delivery systems from the perspective of molecular forces. Finally, we discussed the challenges currently facing polysaccharide-based nano-delivery systems as well as possible future directions for the future.
Collapse
Affiliation(s)
- Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
4
|
Wang X, Sun R, Liu R, Liu R, Sui W, Geng J, Zhu Q, Wu T, Zhang M. Sodium alginate-sodium hyaluronate-hydrolyzed silk for microencapsulation and sustained release of kidney tea saponin: The regulation of human intestinal flora in vitro. Int J Biol Macromol 2023; 249:126117. [PMID: 37541481 DOI: 10.1016/j.ijbiomac.2023.126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jieting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
5
|
Gan L, Ji P, Zhang JX, Chen H, Yao YS, Ren ZK. Drug delivery system for the extended-release of larotrectinib based on a biocompatible Fe-based metal-organic framework: synthesis, characterization, in vitro release properties and antitumor evaluation. Front Bioeng Biotechnol 2023; 11:1197484. [PMID: 37324434 PMCID: PMC10267385 DOI: 10.3389/fbioe.2023.1197484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Larotrectinib (Lar) is an orally administered tropomyosin receptor kinase (Trk) inhibitor with broad-spectrum antitumor activity that is available in clinical dosage forms as capsules and oral solutions. Currently, corresponding research is focused on developing new extended-release formulation systems for Lar. In this study, a biocompatible Fe-based metal-organic framework (Fe-MOF) carrier was synthesized by a solvent-based method, and a sustained-release drug delivery system (Lar@Fe-MOF) was constructed by nanoprecipitation and Lar loading. Lar@Fe-MOF was characterized by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), and its drug loading capacity and drug release properties were measured by ultraviolet-visible (UV-vis) spectroscopy. Then, the toxicity and biocompatibility of the Fe-MOF carriers were evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and hemocompatibility assays. Finally, the anticancer potential of Lar@Fe-MOF was investigated. The TEM results showed that Lar@Fe-MOF had a homogeneous fusiform nanostructural morphology. The DSC and FTIR results showed that Fe-MOF carriers were successfully synthesized and loaded with Lar, which was mainly in an amorphous form. Lar@Fe-MOF showed a large drug loading capacity (-10%) and significant slow-release properties in vitro. The MTT assay results showed that Lar@Fe-MOF had good dose-dependent anticancer activity. The in vivo pharmacodynamic assay results showed that Fe-MOF significantly increased the anticancer activity of Lar and was biocompatible. In conclusion, the Lar@Fe-MOF system developed in this study is a promising drug delivery platform because it is easy to manufacture, has high biocompatibility and ideal drug release and accumulation, can effectively eliminate tumors with improved safety and is expected to further expand therapeutic applications.
Collapse
Affiliation(s)
- Lu Gan
- The Third Affiliated Hospital of Jinzhou Medical University, Jin Zhou, China
| | - Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Jin-xiang Zhang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan-sheng Yao
- The Affiliated Taixing People’s Hospital of Medical College, Yangzhou University, Yangzhou, China
| | - Zhen-kun Ren
- The Third Affiliated Hospital of Jinzhou Medical University, Jin Zhou, China
| |
Collapse
|