1
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
2
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Xiao Z, Zhou L, Sun P, Li Z, Kang Y, Guo M, Niu Y, Zhao D. Regulation of mechanical properties of microcapsules and their applications. J Control Release 2024; 375:90-104. [PMID: 39233280 DOI: 10.1016/j.jconrel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Liyuan Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Mengxue Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
4
|
Zhou W, Zhang W, Geng W, Huang Y, Zhang TK, Yi ZQ, Ge Y, Huang Y, Tian G, Yang XY. External Electrons Directly Stimulate Escherichia coli for Enhancing Biological Hydrogen Production. ACS NANO 2024; 18:10840-10849. [PMID: 38616401 DOI: 10.1021/acsnano.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, 2 Daxue Road, Zhuhai 519082, P. R. China
| | - Yaoqi Huang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tong-Kai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Zi-Qian Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Yang Ge
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Yao Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory & State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122, Luoshi Road, Wuhan 430070, China
| |
Collapse
|
5
|
Yi Z, Tian S, Geng W, Zhang T, Zhang W, Huang Y, Barad HN, Tian G, Yang XY. A Semiconductor Biohybrid System for Photo-Synergetic Enhancement of Biological Hydrogen Production. Chemistry 2023; 29:e202203662. [PMID: 36598845 DOI: 10.1002/chem.202203662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
CdS nanoparticles were introduced on E. coli cells to construct a hydrogen generating biohybrid system via the biointerface of tannic acid-Fe complex. This hybrid system promotes good biological activity in a high salinity environment. Under light illumination, the as-synthesized biohybrid system achieves a 32.44 % enhancement of hydrogen production in seawater through a synergistic effect.
Collapse
Affiliation(s)
- Ziqian Yi
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shouqin Tian
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, P. R. China
| | - Tongkai Zhang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yaoqi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hannah-Noa Barad
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ge Tian
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|