1
|
Hu L, Ma H, Yang C, Wang K, Ji X, Xu T, Xu H, Zhao Y, Zhen Y. Environmental responsive dual-drug synergistic and dual-targeted polymer micelles based on chondroitin sulfate for treatment of breast cancer. Int J Biol Macromol 2025; 311:144083. [PMID: 40348243 DOI: 10.1016/j.ijbiomac.2025.144083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Targeted drug delivery strategy can accurately deliver multiple drugs to tumor cells by biocompatible materials, enhance the therapeutic effect and weaken adverse side effects. Chondroitin sulfate (CS) is a biodegradable material which has dual-targeting ability to CD44 receptors and Golgi apparatus. Flurbiprofen is a COX-2 inhibitor that can be used as an anticancer adjuvant in combination with docetaxel to enhance the antitumor effect. Herein, docetaxel and flurbiprofen were coupled to CS via disulfide bond and ester bond respectively to prepare polymer conjugates chondroitin sulfate-docetaxel (C-ss-D) and chondroitin sulfate-flurbiprofen (C-F). Then the reduction-sensitive micelles C-ss-D and the pH-sensitive micelles C-F were constructed by self-assembly respectively, and the dual-drug micelles C-F/C-ss-D were further prepared. C-F/C-ss-D displayed uniform spherical shape, negative surface charge, and achieved controlled drug release in slightly acidic and reductive tumor microenvironment. C-F/C-ss-D exhibited remarkable targeting ability towards tumor cells and Golgi apparatus, demonstrated potent cytotoxic effect on MCF-7 cells, and induced apoptosis by regulating the expression of COX-2 and apoptosis-related proteins. C-F/C-ss-D effectively inhibited tumor growth in MCF-7 xenograft mice with low toxicity to blood and major organs. Therefore, the environmental responsive dual-drug synergistic and dual-targeted micelles based on CS have great potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Litao Hu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huiling Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chunpeng Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kang Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xu Ji
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Tingxue Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
2
|
Meng W, Huang L, Guo J, Xin Q, Liu J, Hu Y. Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance. Pharmaceutics 2024; 16:1549. [PMID: 39771528 PMCID: PMC11728492 DOI: 10.3390/pharmaceutics16121549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge. Characteristics of the TME such as hypoxia, acidity, and high interstitial pressure significantly reduce the effectiveness of chemotherapy and radiotherapy, leading to increased drug resistance in tumor cells. Then, this review summarizes innovative nanocarrier designs for these microenvironmental features, including hypoxia-sensitive nanoparticles, pH-responsive carriers, and multifunctional nanosystems that enable targeted drug release and improved drug penetration and accumulation in tumors. By combining nanotechnology with therapeutic strategies, this review offers a novel perspective by focusing on the innovative design of nanocarriers that interact with the TME, a dimension often overlooked in similar reviews. We highlight the dual role of these nanocarriers in therapeutic delivery and TME modulation, emphasize their potential to overcome drug resistance, and look at future research directions.
Collapse
Affiliation(s)
- Wenjun Meng
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Li Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Yuzhu Hu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
4
|
Guo X, Han L, Chen W, He H, Zhang W, Huang C, Wang X. Hypoxia and Singlet Oxygen Dual-Responsive Micelles for Photodynamic and Chemotherapy Therapy Featured with Enhanced Cellular Uptake and Triggered Cargo Delivery. Int J Nanomedicine 2024; 19:247-261. [PMID: 38229704 PMCID: PMC10790668 DOI: 10.2147/ijn.s432407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Combination therapy provides better outcomes than a single therapy and becomes an efficient strategy for cancer treatment. In this study, we designed a hypoxia- and singlet oxygen-responsive polymeric micelles which contain azo and nitroimidazole groups for enhanced cellular uptake, repaid cargo release, and codelivery of photosensitizer Ce6 and hypoxia-activated prodrug tirapazamine TPZ (DHM-Ce6@TPZ), which could be used for combining Ce6-mediated photodynamic therapy (PDT) and PDT-activated chemotherapy to enhance the therapy effect of cancer. Methods The hypoxia- and singlet oxygen-responsive polymeric micelles DHM-Ce6@TPZ were prepared by film hydration method. The morphology, physicochemical properties, stimuli responsiveness, in vitro singlet oxygen production, cellular uptake, and cell viability were evaluated. In addition, the in vivo therapeutic effects of the micelles were verified using a tumor xenograft mice model. Results The resulting dual-responsive micelles not only increased the concentration of intracellular photosensitizer and TPZ, but also facilitated photosensitizer and TPZ release for enhanced integration of photodynamic and chemotherapy therapy. As a photosensitizer, Ce6 induced PDT by generating toxic singlet reactive oxygen species (ROS), resulting in a hypoxic tumor environment to activate the prodrug TPZ to achieve efficient chemotherapy, thereby evoking a synergistic photodynamic and chemotherapy therapeutic effect. The cascade synergistic therapeutic effect of DHM-Ce6@TPZ was effectively evaluated both in vitro and in vivo to inhibit tumor growth in a breast cancer mice model. Conclusion The designed multifunctional micellar nano platform could be a convenient and powerful vehicle for the efficient co-delivery of photosensitizers and chemical drugs for enhanced synergistic photodynamic and chemotherapy therapeutic effect of cancer.
Collapse
Affiliation(s)
- Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Lefei Han
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Wenyu Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Huixin He
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Weijin Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Chaoqi Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
5
|
Luo X. Nanobiotechnology-based strategies in alleviation of chemotherapy-mediated cardiotoxicity. ENVIRONMENTAL RESEARCH 2023; 238:116989. [PMID: 37633635 DOI: 10.1016/j.envres.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China.
| |
Collapse
|
6
|
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OPENNANO 2023; 14:100184. [DOI: 10.1016/j.onano.2023.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Almajidi YQ, Kadhim MM, Alsaikhan F, Turki Jalil A, Hassan Sayyid N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Gupta J, Nabavi N, Yu W, Ertas YN. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. ENVIRONMENTAL RESEARCH 2023; 227:115722. [PMID: 36948284 DOI: 10.1016/j.envres.2023.115722] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group(GIEE), National University of Education, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P, India
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
8
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|