1
|
Zheng L, Zheng C, Wang W, Huang F, Jiang Y, Lu J, Lou Y. A CRISPR/Cas12a-based colorimetric AuNPs biosensor for naked-eye detection of pathogenic bacteria in clinical samples. Colloids Surf B Biointerfaces 2025; 250:114541. [PMID: 39893892 DOI: 10.1016/j.colsurfb.2025.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, pose significant threats to public health due to their multidrug resistance and association with severe infections. Rapid and reliable detection methods are crucial for timely treatment and effective infection control, especially in resource-limited settings. In this study, we developed a CRISPR/Cas12a-based colorimetric biosensor that leverages Cas12a's trans-cleavage activity to release left single-stranded DNA (lDNA). The released lDNA facilitates hybridization with clDNA-functionalized gold nanoparticles (AuNPs), resulting in a visible color change. The biosensor achieved a detection limit of 100 CFU/reaction for P. aeruginosa within 2 hours, with excellent specificity and robustness, as validated in spiked sputum and blood samples. Clinical testing using 32 blood samples (13 positive, 19 negative) confirmed its high diagnostic accuracy, achieving an AUC of 1 in ROC curve analysis. The platform's simplicity, robustness, and programmability suggest its broad potential for rapid infectious disease diagnostics, particularly in low-resource settings.
Collapse
Affiliation(s)
- Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chaochuan Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Weiwei Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fuyuan Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yelin Jiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiahai Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Tang S, Cai J, Zhou K, Mei Z, Huang D, Liu L, Yang L, Yin D, Hu L. Cu-MOFs@AuPtNPs nanozyme-based immunosorbent assay for colorimetric detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6443-6450. [PMID: 39225244 DOI: 10.1039/d4ay01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate detection of tumor biomarkers in blood is crucial for diagnosing and treating tumor disease. In this study, a metal enzyme-linked immunosorbent assay (MeLISA) was fabricated for the ultrasensitive and naked-eye detection of tumor biomarker alpha-fetoprotein (AFP) in clinical serum samples. Herein, novel copper metal-organic frameworks and gold platinum nanoparticle composites (Cu-MOFs@AuPtNPs) were synthesized for the first time by an in situ method, which showed an enormous specific surface area and excellent peroxidase (POx) mimicking properties. Cu-MOFs@AuPtNPs linked with antibodies targeting AFP served as a signal nanoprobe to amplify the detection signal. Additionally, the specificity of MeLISA was significantly enhanced through a conventional antigen-antibody reaction and efficient blocking of non-specific sites with BSA. Under optimal conditions, the sandwich-type MeLISA exhibited a wide range from 0.001 to 1000 ng mL-1 (R2 = 0.997) and a low detection limit of 0.86 pg mL-1 (S/N = 3) with acceptable stability, selectivity, and reproducibility. It is noteworthy that the suggested MeLISA performed exceptionally well in detecting clinical serum samples, which were visible to the naked eye and did not require complex platforms. To sum up, the innovative MeLISA based on Cu-MOFs@AuPtNPs provides an alternative method for early cancer diagnosis, particularly in economically backward areas where simple diagnostic apparatus is extremely desirable.
Collapse
Affiliation(s)
- Sitian Tang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Juan Cai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Kai Zhou
- Department of Spine Surgery, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zhu Mei
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dongmei Huang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Ling Liu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Lunyu Yang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dan Yin
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Liyi Hu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| |
Collapse
|
3
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Wu Y, Liu X, Zhang X, Zhang S, Niu P, Gao H. Photothermal theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient antibacterial treatment. RSC Adv 2023; 13:22863-22874. [PMID: 37520103 PMCID: PMC10375255 DOI: 10.1039/d3ra03246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Drug-resistant bacteria caused by the abuse of antibiotics have brought great challenges to antimicrobial therapy. Herein an antibiotic-free polydopamine (PDA) modified metal-organic framework (PDA-FDM-23) with photothermal-enhanced chemodynamic effect was developed for synergistic antibacterial treatment. The PDA-FDM-23 antibacterial agent exhibited high peroxidase-like activity. Moreover, the process was significantly accelerated by consuming glutathione (GSH) to generate more efficient oxidizing Cu+. In addition, the photothermal therapy (PTT) derived from PDA improved the chemodynamic therapy (CDT) activity triggering a reactive oxygen species explosion. This PTT-enhanced CDT strategy illustrated 100% antibacterial efficiency against both Staphylococcus aureus and Escherichia coli. Cytotoxicity and hemolysis analyses fully demonstrated the excellent biocompatibility of PDA-FDM-23. Overall, our work highlighted the strong peroxidase catalytic activity, excellent GSH consumption and photothermal performance of PDA-FDM-23, providing a new strategy for antibiotic-free reactive oxygen species (ROS) synergistic sterilization.
Collapse
Affiliation(s)
- Yuelan Wu
- Qingdao University Qingdao Shandong 266071 P. R. China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
| | - Xiaoxue Liu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| | - Xiaoyu Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 P. R. China
| | - Panhong Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 P. R. China
| | - Hua Gao
- Qingdao University Qingdao Shandong 266071 P. R. China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| |
Collapse
|
6
|
Mu Z, Guo J, Li M, Wu S, Zhang X, Wang Y. A sensitive fluorescence detection strategy for H 2O 2 and glucose by using aminated Fe-Ni bimetallic MOF as fluorescent nanozyme. Mikrochim Acta 2023; 190:81. [PMID: 36746829 DOI: 10.1007/s00604-023-05662-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
An aminated Fe-Ni bimetallic metal-organic framework (Fe3Ni-MOF-NH2) with both peroxidase-like activity and fluorescence properties was developed. Fe3Ni-MOF-NH2 possessed the enhanced peroxidase-like activity through the enhanced electron transfer process and hydroxyl radical (·OH) generation. It was found that the amino group endowed the material with fluorescent property and the metal site Ni in Fe3Ni-MOF-NH2 could also enhance the fluorescence emission intensity (Ex = 345 nm, Em = 452 nm). Based on the dual excellent performance of Fe3Ni-MOF-NH2, a novel sensitive fluorescence detection strategy for H2O2 and glucose was designed and achieved. First, Fe3Ni-MOF-NH2 converted H2O2 to ·OH by exerting peroxidase-like activity, and ·OH converts catechol to o-benzoquinone. Then, the amino group in Fe3Ni-MOF-NH2 connected to o-benzoquinone, which resulted in its fluorescence quenching. The detection limit of H2O2 was as low as 5 nM. Combined with glucose oxidase which can oxidize glucose and produce H2O2 the glucose could be indirectly determined with a detection limit of 40 nM. The method was applied to the detection of low-level glucose in human urine samples with good recoveries and reproducibilities.
Collapse
Affiliation(s)
- Zhao Mu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jingjing Guo
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Mengyuan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shu Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
7
|
Shen Y, Zheng C, Wu Q, Wu Q, Jin M, Jiang Y, Huang F, Lou Y, Zheng L. One-step synthesized antimicrobial peptide-functionalized gold nanoclusters for selective imaging and killing of pathogenic bacteria. Front Microbiol 2022; 13:1003359. [PMID: 36299723 PMCID: PMC9589054 DOI: 10.3389/fmicb.2022.1003359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
The development of multifunctional nanomaterials with bacterial imaging and killing activities is of great importance for the rapid diagnosis and timely treatment of bacterial infections. Herein, peptide-functionalized gold nanoclusters (CWR11-AuNCs) with high-intensity red fluorescence were successfully synthesized via a one-step method using CWR11 as a template and by optimizing the ratio of CWR11 to HAuCl4, reaction time, pH, and temperature. The CWR11-AuNCs bound to bacteria and exhibited selective fluorescence microscopy imaging properties, which is expected to provide a feasible method for locating and imaging bacteria in complex in vivo environments. In addition, CWR11-AuNCs not only retained the antibacterial and bactericidal activities of CWR11 but also exhibited certain inhibitory or killing effects on gram-negative and gram-positive bacteria and biofilms. The MICs of CWR11-AuNCs against Escherichia coli and Staphylococcus aureus were 178 and 89 μg/ml, respectively. Surprisingly, cell viability in the CWR11-AuNC-treated group was greater than that in the CWR11-treated group, and the low cytotoxicity exhibited by the CWR11-AuNCs make them more promising for clinical applications.
Collapse
|
8
|
Liang Y, Li J, Yang S, Wu S, Zhu M, Fedin VP, Zhang Y, Gao E. Self-calibrated FRET fluorescent probe with Metal-organic framework for proportional detection of nitrofuran antibiotics. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|