1
|
Yang Q, Xiang X, Wang H, Liao Y, Li X. Oral natural material hydrogels: a new strategy for enhancing oral drug delivery efficiency. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-28. [PMID: 40418586 DOI: 10.1080/09205063.2025.2509028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Oral administration, owing to its high patient compliance and favorable controllability, is widely employed in clinical settings; however, the efficacy is often constrained by the gastrointestinal environment's impact on bioavailability. As the demand for biocompatibility and biodegradability in biomedical applications intensifies, natural hydrogel-based oral drug delivery systems have gained substantial attention as promising carriers. In this study, we introduce a variety of natural materials, revealing their advantages in enhancing drug bioavailability and targeting capabilities. Through both physical and chemical crosslinking mechanisms, we successfully demonstrate hydrogels exhibiting excellent mechanical properties and biocompatibility. Furthermore, we analyze the potential applications of diverse natural oral hydrogels across fields such as gastrointestinal, metabolic, oncological, and immunotherapeutic diseases. By synthesizing recent advances in this area, we aim to elucidate the critical role these systems can play in biomedicine. Our findings suggest that natural materials possess broad prospects in drug delivery, advocating for continued exploration of their clinical application to facilitate the development and optimization of novel oral therapeutic modalities. This work provides a vital theoretical foundation and practical guidance for future innovations in drug delivery technologies.
Collapse
Affiliation(s)
- Qi Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Han Wang
- Department of Orthopedics, Three Gorges University Renhe Hospital, Yichang, China
| | - Yue Liao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xinzhi Li
- Department of Orthopedics, Three Gorges University Renhe Hospital, Yichang, China
- State Administration of Traditional Chinese Medicine (TCM) Pharmacology (Oncology) Research Level 3 Laboratory, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Geng M, Li L, Tan X, Teng F, Li Y. W/O/W emulsion-filled sodium alginate hydrogel beads for co-encapsulation of vitamins C and E: Insights into the fabrication, lipolysis, and digestion behavior. Food Chem 2024; 457:140095. [PMID: 38905829 DOI: 10.1016/j.foodchem.2024.140095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In this study, vitamins C and E were simultaneously encapsulated in water-in-oil-in-water (W/O/W) emulsion-filled sodium alginate (SA) hydrogel beads, as well as the effects of SA concentrations (0.5%, 1.0%, 1.5%, and 2.0%) on the structures and lipolysis the of hydrogel beads were investigated. With increasing SA concentration, the beads showed larger sizes, denser structures and better textures. The droplets tightly penetrated the gel network at high SA concentrations. Digestion behavior revealed the disintegrated intramolecular structure at low SA concentrations. The beads with 0.5% SA were fragmented, losing the initial shape during digestion in the intestinal fluid. Additionally, lipid phases were released as W/O/W and O/W emulsion droplets after digestion. However, the high SA concentration-containing beads exhibited a well-preserved morphological structure after digestion, and the release profiles of lipid phase were mainly O/W emulsion droplets. Furthermore, vitamins C and E encapsulated in the beads exhibited high bioaccessibility (vitamin C: 90.20% and vitamin E: 95.19%).
Collapse
Affiliation(s)
- Mengjie Geng
- Colleage of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- Colleage of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Colleage of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- Colleage of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- Colleage of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Wang Q, Liu K, Cao X, Rong W, Shi W, Yu Q, Deng W, Yu J, Xu X. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng Transl Med 2024; 9:e10646. [PMID: 39036078 PMCID: PMC11256167 DOI: 10.1002/btm2.10646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
Collapse
Affiliation(s)
- Qilong Wang
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Kai Liu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Xia Cao
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wanjin Rong
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwan Shi
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Qintong Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwen Deng
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Jiangnan Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Ximing Xu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| |
Collapse
|
4
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
5
|
Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J Funct Biomater 2023; 14:55. [PMID: 36826854 PMCID: PMC9966105 DOI: 10.3390/jfb14020055] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel's material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Lately, research has been focused on hydrogels from natural sources. Polysaccharides have drawn attention in recent years as a promising material for biological applications, due to their biocompatibility, biodegradability, non-toxicity, and excellent mechanical properties. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects. This review summarizes hydrogels' classification, properties, and synthesis methods. Furthermore, it also covers several important natural polysaccharides (chitosan, alginate, hyaluronic acid, cellulose, and carrageenan) widely used as hydrogels for drug delivery and, in particular, their application in cancer treatment.
Collapse
Affiliation(s)
- Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|