1
|
Huang Y, Li H, Qi L, Wang Z, Liu Z, Wu R, Chen Q, Zhu C, Sun D, Liu L, Zhang L, Feng G. NanoCRISPR-assisted biomimetic tissue-equivalent patch regenerates the intervertebral disc by inhibiting endothelial-to-mesenchymal transition. Biomaterials 2025; 322:123404. [PMID: 40398216 DOI: 10.1016/j.biomaterials.2025.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The integrity of the intervertebral disc (IVD), an immune-privileged organ protected by the blood-disc barrier, is compromised following annulus fibrosus (AF) injury. This breach facilitates angiogenesis, immune cell infiltration, and inflammation, accelerating intervertebral disc degeneration (IDD) and resulting in various clinical disorders. Current treatments fail to adequately address biological repair of AF defects and angiogenesis. Single-cell RNA sequencing analyses reveal that vascular endothelial growth factor (VEGF), secreted by IDD-associated fibrochondrocytes, is crucial in promoting angiogenesis by inducing endothelial-to-mesenchymal transition (EndoMT). This study proposes a nano-clustered regularly interspaced short palindromic repeats (CRISPR)-assisted AF patch with an aligned, polydopamine-modified nano-lamellae nanofibrous scaffold that replicates the hierarchical structure of natural AF, providing a conducive microenvironment for AF repair. A zeolitic imidazolate framework-8-based nanoCRISPR system encapsulates the CRISPR/CRISPR-associated protein 9 complex to target and eliminate VEGF-mediated angiogenic factors. In vitro studies demonstrate that the nanoCRISPR-assisted patch can enhance AF cell adhesion and migration, promote extracellular matrix deposition, knock out VEGF expression, and inhibit EndoMT. In vivo studies show its significant efficacy in promoting AF repair, inhibiting abnormal angiogenesis, and delaying IDD progression. This study presents a promising approach for structural and biological AF regeneration, addressing physical and angiogenic barriers in IVD regeneration.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhe Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Qian Chen
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Yilmaz H, Abdulazez IF, Gursoy S, Kazancioglu Y, Ustundag CB. Cartilage Tissue Engineering in Multilayer Tissue Regeneration. Ann Biomed Eng 2025; 53:284-317. [PMID: 39400772 DOI: 10.1007/s10439-024-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The functional and structural integrity of the tissue/organ can be compromised in multilayer reconstructive applications involving cartilage tissue. Therefore, multilayer structures are needed for cartilage applications. In this review, we have examined multilayer scaffolds for use in the treatment of damage to organs such as the trachea, joint, nose, and ear, including the multilayer cartilage structure, but we have generally seen that they have potential applications in trachea and joint regeneration. In conclusion, when the existing studies are examined, the results are promising for the trachea and joint connections, but are still limited for the nasal and ear. It may have promising implications in the future in terms of reducing the invasiveness of existing grafting techniques used in the reconstruction of tissues with multilayered layers.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Israa F Abdulazez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- University of Baghdad Al-Khwarizmi College of Engineering Biomedical Engineering Departments, Baghdad, Iraq
| | - Sevda Gursoy
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yagmur Kazancioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Kang M, Liang H, Hu Y, Wei Y, Huang D. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol 2024; 281:136312. [PMID: 39370072 DOI: 10.1016/j.ijbiomac.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease involving all joint components, including cartilage, calcified cartilage, and subchondral bone. The repair of osteochondral defects remains a significant challenge in orthopedics. Development of new strategies is essential for effective osteochondral injury repair. In this study, gelatin (Gel), polyethylene glycol diglycidyl ether (PEGDGE), hydroxyethyl cellulose (HEC) and chitosan (CS) were used to prepare semi-IPNs and IPNs hydrogels. Mechanical properties of Gel based hydrogels significantly improved with the semi-IPN and IPN structures. Tensile strength ranges from 238.7 KPa to 479.5 KPa, and its compressive strength ranges from 35.6 KPa to 112.7 KPa. Additionally, the stress relaxation rate increased with higher CS concentrations, ranging from 25 % to 35 %. The network structure of Gel-based hydrogels was a key factor in regulating stress relaxation. Viscoelasticity was adjusted by its network structures. Swelling and degradation behaviors of Gel based hydrogels were systematically investigated. Gel based hydrogels had good cytocompatibility. Both semi-IPN and IPN structures Gel based hydrogels could promote cell spreading and osteogenic differentiation. G10HEC1 and G10CS1 hydrogels show promise as candidates for osteochondral tissue regeneration, offering a new strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haijiao Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
4
|
Robles KN, Zahra FT, Mu R, Giorgio T. Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering. Polymers (Basel) 2024; 16:2853. [PMID: 39458681 PMCID: PMC11511575 DOI: 10.3390/polym16202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Tissue engineering has great potential for the restoration of damaged tissue due to injury or disease. During tissue development, scaffolds provide structural support for cell growth. To grow healthy tissue, the principal components of such scaffolds must be biocompatible and nontoxic. Poly(ε-caprolactone) (PCL) is a biopolymer that has been used as a key component of composite scaffolds for tissue engineering applications due to its mechanical strength and biodegradability. However, PCL alone can have low cell adherence and wettability. Blends of biomaterials can be incorporated to achieve synergistic scaffold properties for tissue engineering. Electrospun PCL-based scaffolds consist of single or blended-composition nanofibers and nanofibers with multi-layered internal architectures (i.e., core-shell nanofibers or multi-layered nanofibers). Nanofiber diameter, composition, and mechanical properties, biocompatibility, and drug-loading capacity are among the tunable properties of electrospun PCL-based scaffolds. Scaffold properties including wettability, mechanical strength, and biocompatibility have been further enhanced with scaffold layering, surface modification, and coating techniques. In this article, we review nanofibrous electrospun PCL-based scaffold fabrication and the applications of PCL-based scaffolds in tissue engineering as reported in the recent literature.
Collapse
Affiliation(s)
- Karla N. Robles
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Fatima tuz Zahra
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Richard Mu
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
| | - Todd Giorgio
- TIGER Institute, Tennessee State University, Nashville, TN 37209, USA; (F.t.Z.); (T.G.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Pan P, Yu X, Chen T, Liu W. SOX9 functionalized scaffolds as a barrier to against cartilage fibrosis. Colloids Surf B Biointerfaces 2024; 241:114011. [PMID: 38838445 DOI: 10.1016/j.colsurfb.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Hyaline cartilage regeneration will bring evangel to millions of people suffered from cartilage diseases. However, uncontrollable cartilage fibrosis and matrix mineralization are the primary causes of cartilage regeneration failure in many tissue engineering scaffolds. This study presents a new attempt to avoid endochondral ossification or fibrosis in cartilage regeneration therapy by establishing biochemical regulatory area. Here, SOX9 expression plasmids are assembled in cellulose gels by chitosan gene vectors to fabricate SOX9+ functionalized scaffolds. RT-qPCR, western blot and biochemical analysis all show that the SOX9 reinforcement strategy can enhance chondrogenic specific proteins expression and promote GAG production. Notably, the interference from SOX9 has resisted osteogenic inducing significantly, showing an inhibition of COL1, OPN and OC production, and the inhibition efficiency was about 58.4 %, 22.8 % and 76.9 % respectively. In vivo study, implantation of these scaffolds with BMSCs can induce chondrogenic differentiation and resist endochondral ossification effectively. Moreover, specific SOX9+ functionalized area of the gel exhibited the resistance to matrix mineralization, indicating the special biochemical functional area for cartilage regeneration. These results indicate that this strategy is effective for promoting the hyaline cartilage regeneration and avoiding cartilage fibrosis, which provides a new insight to the future development of cartilage regeneration scaffolds.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
6
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
7
|
Chen X, Liu Z, Ma R, Lu J, Zhang L. Electrospun nanofibers applications in caries lesions: prevention, treatment and regeneration. J Mater Chem B 2024; 12:1429-1445. [PMID: 38251708 DOI: 10.1039/d3tb02616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Dental caries is a multifactorial disease primarily mediated by biofilm formation, resulting in a net loss of mineral content and degradation of organic matrix in dental hard tissues. Caries lesions of varying depths can result in demineralization of the superficial enamel, the formation of deep cavities extending into the dentin, and even pulp infection. Electrospun nanofibers (ESNs) exhibit an expansive specific surface area and a porous structure, closely mimicking the unique architecture of the natural extracellular matrix (ECM). This unique topography caters to the transport of small molecules and facilitates localized therapeutic drug delivery, offering great potential in regulating cell behavior, and thereby attracting interest in ESNs' applications in the treatment of caries lesions and the reconditioning of the affected dental tissues. Thus, this review aims to consolidate the recent developments in ESNs' applications for caries lesions. This review begins with an introduction to the electrospinning technique and provides a comprehensive overview of the biological properties and modification methods of ESNs, followed by an introduction outlining the basic pathological processes, classification and treatment requirements of caries lesions. Finally, the review offers a detailed examination of the research progress on the ESNs' application in caries lesions and concludes by addressing the limitations.
Collapse
Affiliation(s)
- Xiangshu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Rui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| |
Collapse
|