1
|
Bao Z, Yang R, Chen B, Luan S. Degradable polymer bone adhesives. FUNDAMENTAL RESEARCH 2025; 5:782-795. [PMID: 40242523 PMCID: PMC11997572 DOI: 10.1016/j.fmre.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
Highly comminuted fractures and bone defects pose a significant challenge for orthopedic surgery. Current surgical procedures commonly rely on metal implants (such as bone plates, nails and pins) for fracture internal and external fixations, but they are likely to result in problems, such as stress shielding and poor bone healing. Bone adhesive represents an attractive alternative for the treatment of fracture. The ideal bone adhesive should satisfy several performance requirements, including high adhesion strength for bone tissues, rapid in-situ curing in a physiological environment, good biocompatibility with no toxicity, degradability, and good stability in vivo. Among these requirements, degradability is a crucial characteristic of bone adhesives. This property enables the material to be easily removed without the need for surgery at a later stage, ensuring the regeneration of bone tissue without any hindrance. The degradation rate of bone adhesive varies depending on the application scenarios and tissues, ranging from weeks to years. Many bone adhesives are unable to guarantee degradability while achieving other necessary performances. Therefore, this article provides a detailed overview of the strategies to fabricate biodegradable polymer bone adhesives that can maintain high bulk and adhesion strength, biocompatibility and other properties. Finally, the current challenges in the clinical translation of bone adhesives and their future development directions are discussed.
Collapse
Affiliation(s)
- Zijian Bao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binggang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Lucia U, Grisolia G, Ponzetto A, Deisboeck TS. Thermophysical Insights into the Anti-Inflammatory Potential of Magnetic Fields. Biomedicines 2024; 12:2534. [PMID: 39595100 PMCID: PMC11592124 DOI: 10.3390/biomedicines12112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Inflammation is caused by an excess of Sodium ions inside the cell. This generates a variation in the cell's membrane electric potential, becoming a steady state from a thermodynamic viewpoint. Methods: This paper introduces a thermodynamic approach to inflammation based on the fundamental role of the electric potential of the cell membrane, introducing an analysis of the effect of heat transfer related to the inflammation condition. Results: The direct proportionality between the reduction in temperature and the increase of Na+ outflow may ameliorate the inflammation cascade. Conclusions: Based on these ion fluxes, we suggest the consideration of a 'companion' electromagnetic therapeutic wave concept in support of the present anti-inflammatory treatment.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Grisolia
- Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonio Ponzetto
- Dipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Thomas S. Deisboeck
- Department of Radiology, Harvard-MIT Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Al Madhoun A, Meshal K, Carrió N, Ferrés-Amat E, Ferrés-Amat E, Barajas M, Jiménez-Escobar AL, Al-Madhoun AS, Saber A, Abou Alsamen Y, Marti C, Atari M. Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration. J Funct Biomater 2024; 15:293. [PMID: 39452591 PMCID: PMC11508358 DOI: 10.3390/jfb15100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Implant stability can be compromised by factors such as inadequate bone quality and infection, leading to potential implant failure. Ensuring implant stability and longevity is crucial for patient satisfaction and quality of life. In this multicenter, randomized, double-blind clinical trial, we assessed the impact of a bone bioactive liquid (BBL) on the Galaxy TS implant's performance, stability, and osseointegration. We evaluated the impact stability, osseointegration, and pain levels using initial stability quotient (ISQ) measurements, CBCT scans, and pain assessment post-surgery. Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In vitro studies examined the BBL's effects on dental pulp pluripotent stem cells' (DPPSCs') osteogenesis and inflammation modulation in human macrophages. All implants successfully osseointegrated, as demonstrated by the results of our clinical and histological studies. The BBL-treated implants showed significantly lower pain scores by day 7 (p < 0.00001) and improved stability by day 30 (ISQ > 62.00 ± 0.59, p < 8 × 10-7). By day 60, CBCT scans revealed an increased bone area ratio in BBL-treated implants. AFM images demonstrated the BBL's softening and wettability effect on implant surfaces. Furthermore, the BBL promoted DPPSCs' osteogenesis and modulated inflammatory markers in human primary macrophages. This study presents compelling clinical and biological evidence that BBL treatment improves Galaxy TS implant stability, reduces pain, and enhances bone formation, possibly through surface tension modulation and immunomodulatory effects. This advancement holds promise for enhancing patient outcomes and implant longevity.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Khaled Meshal
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
| | - Neus Carrió
- Periodontology Department, Universitat Internacional de Catalunya (UIC), C/Josep Trueta s/n, 08195 Barcelona, Spain;
| | - Eduard Ferrés-Amat
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
- Oral and Maxillofacial Surgery Department, Universitat Internacional de Catalunya (UIC), St Josep Trueta s/n, 08195 Barcelona, Spain
| | - Elvira Ferrés-Amat
- Oral and Maxillofacial Surgery and Pediatric Dentistry Department, Universitat Internacional de Catalunya (UIC), St Josep Trueta s/n, 08195 Barcelona, Spain;
| | - Miguel Barajas
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
- Biochemistry and Molecular Biology Department, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | - Areej Said Al-Madhoun
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
| | - Alaa Saber
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
| | - Yazan Abou Alsamen
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
| | - Carles Marti
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
- Oral and Maxillofacial Surgery Department, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Maher Atari
- Biointelligent Technology Systems SL, C/Diputaccion 316, 3D, 08009 Barcelona, Spain; (K.M.); (E.F.-A.); (M.B.); (A.S.A.-M.); (A.S.); (Y.A.A.); (C.M.)
| |
Collapse
|
4
|
Ahmed MA, Mahmoud SA, Mohamed AA. Unveiling the photocatalytic potential of graphitic carbon nitride (g-C 3N 4): a state-of-the-art review. RSC Adv 2024; 14:25629-25662. [PMID: 39148759 PMCID: PMC11325859 DOI: 10.1039/d4ra04234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4)-based materials have emerged as promising photocatalysts due to their unique band structure, excellent stability, and environmental friendliness. This review provides a comprehensive and in-depth analysis of the current state of research on g-C3N4-based photocatalysts. The review summarizes several strategies to improve the photocatalytic performance of pristine g-C3N4, e.g., by creating heterojunctions, doping with non-metallic and metallic materials, co-catalyst loading, tuning catalyst morphology, metal deposition, and nitrogen-defect engineering. The review also highlights the various characterization techniques employed to elucidate the structural and physicochemical features of g-C3N4-based catalysts, as well as their applications of in photocatalytic degradation and hydrogen production, emphasizing their remarkable performance in pollutants' removal and clean energy generation. Furthermore, this review article investigates the effect of operational parameters on the catalytic activity and efficiency of g-C3N4-based catalysts, shedding light on the key factors that influence their performance. The review also provides insights into the photocatalytic pathways and reaction mechanisms involving g-C3N4 based photocatalysts. The review also identifies the research gaps and challenges in the field and presents prospects for the development and utilization of g-C3N4-based photocatalysts. Overall, this comprehensive review provides valuable insights into the synthesis, characterization, applications, and prospects of g-C3N4-based photocatalysts, offering guidance for future research and technological advancements in this rapidly growing field.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
5
|
Doveri L, Diaz Fernandez YA, Dacarro G. Nanomaterials for Photothermal Antimicrobial Surfaces. ACS OMEGA 2024; 9:25575-25590. [PMID: 38911752 PMCID: PMC11190936 DOI: 10.1021/acsomega.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Microbial infection diseases are a major threat to human health and have become one of the main causes of mortality. The search for novel antimicrobial strategies is an important challenge for the scientific community, considering also the constant increase of antimicrobial resistance and the rise of new diseases. Among the new strategies to combat microbial infections, the photothermal effect seems to be one of the most promising. Hyperthermia is an effective and broad spectrum strategy for the removal of microbial infections. Among all of the strategies to reduce the diffusion of microbial infections, the preparation of antimicrobial surfaces seems of primary importance. In many cases, in fact, an infection can be diffused through surfaces just by touching them, or by inoculating microbes through an internalizable device, such as an implant, a prosthesis, or a catheter. In this review, we will summarize the recent advances in the preparation of photothermal antibacterial surfaces.
Collapse
Affiliation(s)
- Lavinia Doveri
- Department
of Chemistry, University of Pavia, Via Taramelli 12, I-27100 Pavia, Italy
| | | | - Giacomo Dacarro
- Department
of Chemistry, University of Pavia, Via Taramelli 12, I-27100 Pavia, Italy
- Centre
for Health Technologies (CHT), University
of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
6
|
Al Ansari N, Abid M. Enhancing Presurgical Infant Orthopedic Appliances: Characterization, Mechanics, and Biofilm Inhibition of a Novel Chlorhexidine-Halloysite Nanotube-Modified PMMA. Int J Biomater 2024; 2024:6281972. [PMID: 38962288 PMCID: PMC11221949 DOI: 10.1155/2024/6281972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
Objectives This in vitro study aimed to develop a novel nanocomposite acrylic resin with inherent antimicrobial properties. This study evaluated its effectiveness against microbial biofilm formation, while also assessing its physical and mechanical properties. Methods Polymethylmethacrylate (PMMA) was modified with four different concentrations of chlorhexidine halloysite nanotubes (CHX-HNTs): 1%, 1.5%, 3%, and 4.5 wt.% by weight, along with a control group (0 wt.% CHX-HNTs). The biofilm inhibition ability of the modified CHX-HNTs acrylic against Candida albicans, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus agalactiae was assessed using microtiter biofilm test. In addition, ten samples from each group were then tested for flexural strength, surface roughness, and hardness. Statistical analysis was performed using one-way ANOVA and Tukey's test for comparison (P < 0.05). Results CHX-HNTs effectively reduced the adhesion of Candida albicans and bacteria to the PMMA in a dose-dependent manner. The higher the concentration of CHX-HNTs, the greater the reduction in microbial adhesion, with the highest concentration (4.5 wt.%) showing the most significant effect with inhibition rates ≥98%. The addition of CHX-HNTs at any tested concentration (1%, 1.5%, 3%, and 4.5 wt.%) did not cause any statistically significant difference in the flexural strength, surface roughness, or hardness of the PMMA compared to the control group. Conclusions The novel integration of CHX-HNT fillers shows promising results as an effective biofilm inhibitor on acrylic appliances. This new approach has the potential to successfully control infectious diseases without negatively affecting the mechanical properties of the acrylic resin. Clinical Relevance. The integration of CHX-HNTs into presurgical infant orthopedic appliances should be thoroughly assessed as a promising preventive measure to mitigate microbial infections. This evaluation holds significant potential for controlling infectious diseases among infants with cleft lip and palate, thereby offering a valuable contribution to their overall well-being.
Collapse
Affiliation(s)
- Nadia Al Ansari
- Department of Orthodontics, Al Rafidain University College, Baghdad, Iraq
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Mushriq Abid
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Qi F, Li H, Gao X, Wang Y, Qian H, Li W, Liu S, Zhou H, Peng S, Shuai C. Oxygen vacancy healing boosts the piezoelectricity of bone scaffolds. Biomater Sci 2024; 12:495-506. [PMID: 38088401 DOI: 10.1039/d3bm01283b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Although barium titanate (BaTiO3) presented tremendous potential in achieving self-powered stimulation to accelerate bone repair, pervasive oxygen vacancies restricted the full play of its piezoelectric performance. Herein, BaTiO3-GO nanoparticles were synthesized by the in situ growth of BaTiO3 on graphene oxide (GO), and subsequently introduced into poly-L-lactic acid (PLLA) powders to prepare PLLA/BaTiO3-GO scaffolds by laser additive manufacturing. During the synthesis process, CO and C-OH in GO would respectively undergo cleavage and dehydrogenation at high temperature to form negatively charged oxygen groups, which were expected to occupy positively charged oxygen vacancies in BaTiO3 and thereby inhibit the formation of oxygen vacancies. Moreover, GO could be partially reduced to reduced graphene oxide, which could act as a conductive phase to facilitate polarization charge transfer, thus further improving the piezoelectric performance. The results showed that the oxygen peak at the specific electron binding energy in O 1s declined from 54.4% to 14.6% and the Ti3+ peak that was positively correlated with oxygen vacancies apparently weakened for BaTiO3-GO, illustrating that the introduced GO significantly decreased the oxygen vacancy. As a consequence, the piezoelectric current of PLLA/BaTiO3-GO increased from 80 to 147.3 nA compared with that of PLLA/BaTiO3. The enhanced piezoelectric current effectively accelerated cell differentiation by upregulating alkaline phosphatase expression, calcium salt deposition and calcium influx. This work provides a novel insight for the design of self-powered stimulation scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fangwei Qi
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Huixing Li
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Xiuwen Gao
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Yifeng Wang
- Shenzhen Shanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen, 518107, China
| | - Hongyi Qian
- Shenzhen Shanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen, 518107, China
| | - Wei Li
- School of Science, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Shuling Liu
- Jiangxi Institute of Science and Technology Information, Nanchang, 330013, China
| | - Huarui Zhou
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
8
|
Frýdlová B, Fajstavr D, Slepičková Kasálková N, Rimpelová S, Svobodová Pavlíčková V, Švorčík V, Slepička P. Replicated biopolymer pattern on PLLA-Ag basis with an excellent antibacterial response. Heliyon 2023; 9:e21566. [PMID: 38027944 PMCID: PMC10663834 DOI: 10.1016/j.heliyon.2023.e21566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The design of functional micro or nanostructured surfaces is undergoing extensive research for their intriguing multifunctional properties and for large variety of potential applications in biomedical field (tissue engineering or cell adhesion), electronics, optics or microfluidics. Such nanosized topographies can be easily fabricated by various lithography techniques and can be also further reinforced by synergic effect by combining aforementioned structures along materials with already outstanding antibacterial properties. In this work we fabricated novel micro/nanostructured substrates using soft lithography replication method and subsequent thermal nanoimprint lithography method, creating nanostructured films based on poly (l-lactic acid) (PLLA) fortified by thin silver films deposited by PVD. Main nanoscale patterns were fabricated by replicating surface patterns of optical discs (CDs and DVDs), which proved to be easy, fast and inexpensive method for creating relatively large area patterned surfaces. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The results demonstrated that nanopatterned films actually improved the conditions for bacterial growth compared to pristine PLLA films, the novelty is based on formation of Ag nanoparticles on the surface/and in bulk, while silver nanoparticle enhanced and nanopatterned films exhibited excellent antibacterial activity against both bacterial strains, with circa 80 % efficacy in 4 h and complete bactericidal effect in span of 24 h.
Collapse
Affiliation(s)
- Bára Frýdlová
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Dominik Fajstavr
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| |
Collapse
|