1
|
Pang X, Chen J, Li L, Huang W, Liu J. Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms. BIOLOGY 2024; 13:1076. [PMID: 39765746 PMCID: PMC11673024 DOI: 10.3390/biology13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation. Proteomics studies further reveal changes in protein expression under drought conditions, elucidating stress response mechanisms. Additionally, microRNAs (miRNAs) have been identified as key regulators in drought response. Advances in proteomics and transcriptomics have highlighted key proteins and genes that respond to drought stress, offering new insights into drought tolerance. To address the challenge of drought, future research should emphasize the development of drought-resistant varieties through precision breeding techniques such as gene editing, marker-assisted selection (MAS), and the integration of artificial intelligence. Additionally, the adoption of environmentally sustainable cultivation practices, including precision irrigation and the use of anti-drought agents, is crucial for improving water-use efficiency and crop resilience. International collaboration and data sharing will be essential to accelerate progress and ensure global food security in increasingly arid conditions. These efforts will enable Solanaceae crops to adapt the challenges posed by climate change, ensuring their productivity and sustainability.
Collapse
Affiliation(s)
- Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Jun Chen
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Linzhi Li
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Wenjuan Huang
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China;
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China;
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. DRB1, DRB2 and DRB4 Are Required for an Appropriate miRNA-Mediated Molecular Response to Osmotic Stress in Arabidopsis thaliana. Int J Mol Sci 2024; 25:12562. [PMID: 39684274 DOI: 10.3390/ijms252312562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Arabidopsis thaliana (Arabidopsis) double-stranded RNA binding (DRB) proteins DRB1, DRB2 and DRB4 perform essential roles in microRNA (miRNA) production, with many of the produced miRNAs mediating aspects of the molecular response of Arabidopsis to abiotic stress. Exposure of the drb1, drb2 and drb4 mutants to mannitol stress showed drb2 to be the most sensitive to this form of osmotic stress. Profiling of the miRNA landscapes of mannitol-stressed drb1, drb2 and drb4 seedlings via small RNA sequencing, and comparison of these to the profile of mannitol-stressed wild-type Arabidopsis plants, revealed that the ability of the drb1 and drb2 mutants to mount an appropriate miRNA-mediated molecular response to mannitol stress was defective. RT-qPCR was next used to further characterize seven miRNA/target gene expression modules, with this analysis identifying DRB1 as the primary DRB protein required for miR160, miR164, miR167 and miR396 production. In addition, via its antagonism of DRB1 function, DRB2 was shown by RT-qPCR to play a secondary role in regulating the production of these four miRNAs. This analysis further showed that DRB1, DRB2 and DRB4 are all required to regulate the production of miR399 and miR408, and that DRB4 is the primary DRB protein required to produce the non-conserved miRNA, miR858. Finally, RT-qPCR was used to reveal that each of the seven characterized miRNA/target gene expression modules responded differently to mannitol-induced osmotic stress in each of the four assessed Arabidopsis lines. In summary, this research has identified mannitol-stress-responsive miRNA/target gene expression modules that can be molecularly manipulated in the future to generate novel Arabidopsis lines with increased tolerance to this form of osmotic stress.
Collapse
Affiliation(s)
- Joseph L Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M J Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Andrew L Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
3
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Chen Z, Liu Y, Wang Q, Fei J, Liu X, Zhang C, Yin Y. miRNA Sequencing Analysis in Maize Roots Treated with Neutral and Alkaline Salts. Curr Issues Mol Biol 2024; 46:8874-8889. [PMID: 39194741 DOI: 10.3390/cimb46080524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Soil salinization/alkalization is a complex environmental factor that includes not only neutral salt NaCl but also other components like Na2CO3. miRNAs, as small molecules that regulate gene expression post-transcriptionally, are involved in plant responses to abiotic stress. In this study, maize seedling roots were treated for 5 h with 100 mM NaCl, 50 mM Na2CO3, and H2O, respectively. Sequencing analysis of differentially expressed miRNAs under these conditions revealed that the Na2CO3 treatment group had the most differentially expressed miRNAs. Cluster analysis indicated their main involvement in the regulation of ion transport, binding, metabolism, and phenylpropanoid and flavonoid biosynthesis pathways. The unique differentially expressed miRNAs in the NaCl treatment group were related to the sulfur metabolism pathway. This indicates a significant difference in the response patterns of maize to different treatment groups. This study provides theoretical evidence and genetic resources for further analysis of the molecular mechanisms behind maize's salt-alkali tolerance.
Collapse
Affiliation(s)
- Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jianbo Fei
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| |
Collapse
|
5
|
Unel NM, Baloglu MC, Altunoglu YÇ. Comprehensive investigation of cucumber heat shock proteins under abiotic stress conditions: A multi-omics survey. J Biotechnol 2023; 374:49-69. [PMID: 37517677 DOI: 10.1016/j.jbiotec.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.
Collapse
Affiliation(s)
- Necdet Mehmet Unel
- Research and Application Center, Kastamonu University, Kastamonu, Turkey; Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Turkey.
| | - Yasemin Çelik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
6
|
Lu Y, Zhang J, Han Z, Han Z, Li S, Zhang J, Ma H, Han Y. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC PLANT BIOLOGY 2022; 22:478. [PMID: 36207676 PMCID: PMC9547441 DOI: 10.1186/s12870-022-03866-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A reasonable supply of nitrogen (N) fertilizer is essential for obtaining high-quality, high-level, and stable potato yields, and an improvement in the N utilization efficiency can effectively reduce N fertilizer use. It is important to use accurate, straightforward, and efficient transgenic breeding techniques for the identification of genes that can improve nitrogen use efficiency, thus enabling us to achieve the ultimate goal of breeding N-efficient potato varieties. In recent years, some of the mechanisms of miRNAs have been elucidated via the analysis of the correlation between the expression levels of potato miRNA target genes and regulated genes under conditions of stress, but the role of miRNAs in the inhibition/expression of key genes regulating N metabolism under N stress is still unclear. Our study aimed to identify the role played by specific enzymes and miRNAs in the responses of plants to N stress. RESULTS The roots and leaves of the N-efficient potato variety, Yanshu4 ("Y"), and N-inefficient potato variety, Atlantic ("D"), were collected at the seedling and budding stages after they were exposed to different N fertilizer treatments. The miRNAs expressed differentially under the two types of N stress and their corresponding target genes were first predicted using miRNA and degradome analysis. Then, quantitative polymerase chain reaction (qRT-PCR) was performed to verify the expression of differential miRNAs that were closely related to N metabolism. Finally, the shearing relationship between stu-miR396-5p and its target gene StNiR was determined by analyzing luciferase activity levels. The results showed that NiR activity increased significantly with an increase in the applied N levels from the seedling stage to the budding stage, and NiR responded significantly to different N treatments. miRNA sequencing enabled us to predict 48 families with conserved miRNAs that were mainly involved in N metabolism, carbon metabolism, and amino acid biosynthesis. The differences in the expression of the following miRNAs were identified via screening (high expression levels and P < 0.05): stu-miR396-5p, stu-miR408b-3p_R-1, stu-miR3627-3p, stu-miR482a-3p, stu-miR8036-3p, stu-miR482a-5p, stu-miR827-5p, stu-miR156a_L-1, stu-miR827-3p, stu-miR172b-5p, stu-miR6022-p3_7, stu-miR398a-5p, and stu-miR166c-5p_L-3. Degradome analysis showed that most miRNAs had many-to-many relationships with target genes. The main target genes involved in N metabolism were NiR, NiR1, NRT2.5, and NRT2.7. qRT-PCR analysis showed that there were significant differences in the expression levels of stu-miR396-5p, stu-miR8036-3p, and stu-miR482a-3p in the leaves and roots of the Yanshu4 and Atlantic varieties at the seedling and budding stages under conditions that involved no N and excessive N application; the expression of these miRNAs was induced in response to N stress. The correlation between the differential expression of stu-miR396-5p and its corresponding target gene NiR was further verified by determining the luciferase activity level and was found to be strongly negative. CONCLUSION The activity of NiR was significantly positively correlated with N application from the seedling to the budding stage. Differential miRNAs and target genes showed a many-to-many relationship with each other. The expression of stu-miR396-5p, stu-miR482a-3p, and stu-miR8036-3p in the roots and leaves of the Yanshu4 and Atlantic varieties at the seedling and budding stages was notably different under two types of N stress. Under two types of N stress, stu-miR396-5p was down-regulated in Yanshu4 in the seedling-stage and shoot-stage roots, and up-regulated in seedling-stage roots and shoot-stage leaves; stu-miR482a-3p was up-regulated in the seedling and shoot stages. The expression of stu-miR8036-3p was up-regulated in the leaves and roots at the seedling and budding stages, and down-regulated in roots under both types of N stress. The gene expressing the key enzyme involved in N metabolism, StNiR, and the stu-miR396-5p luciferase assay reporter gene had a strong regulatory relationship with each other. This study provides candidate miRNAs related to nitrogen metabolism and highlights that differential miRNAs play a key role in nitrogen stress in potato, providing insights for future research on miRNAs and their target genes in nitrogen metabolic pathways and breeding nitrogen-efficient potatoes.
Collapse
Affiliation(s)
- Yue Lu
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jingying Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
- College of Resources and Environment, Jilin Agricultural University, Changchun City, 130118, P.R. China
| | - Zhijun Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Zhongcai Han
- Jilin Provincial Research Institute of Vegetables and Flowers, Changchun City, 130052, People's Republic of China
| | - Shuang Li
- Teaching and Research Base Management Office, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jiayue Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Haoran Ma
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Yuzhu Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China.
| |
Collapse
|
7
|
He C, Han T, Tan L, Li X. Effects of Dark Septate Endophytes on the Performance and Soil Microbia of Lycium ruthenicum Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:898378. [PMID: 35720577 PMCID: PMC9201775 DOI: 10.3389/fpls.2022.898378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
In the current study, we explored the effects of dark septate endophytes (DSE) (Neocamarosporium phragmitis, Alternaria chlamydospore, and Microascus alveolaris) on the performance and rhizosphere soil microbial composition of Lycium ruthenicum Murr under drought stress. Differences in plant growth and physiological indexes, soil parameters, and microbial composition under different treatments were studied. Three DSE species could form good symbiotic relationships with L. ruthenicum plants, and the symbionts depended on DSE species and water availability. Inoculation of DSE had the greatest benefit on host plants under drought conditions. In particular, N. phragmitis and A. chlamydospore had a significant positive influence on the biomass, morphological and physiological indexes of host plants. Additionally, the content of arbuscular mycorrhiza (AM) fungi, gram-negative bacteria, and actinomycetes in the soil was significantly elevated after DSE inoculation in the absence of water. Based on a variance decomposition analysis, DSE was the most important factor affecting the growth and physiological parameters of host plants, and DSE inoculation combined with water conditions significantly affected the contents of soil microbial communities. Structural equation model (SEM) analysis showed that the positive effects of DSE on L. ruthenicum varied with DSE species and plant parameters under different water conditions. These results are helpful to understand the ecological function of DSE and its potential application in the cultivation of L. ruthenicum plants in drylands.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Tan
- Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Yang X, Liu C, Niu X, Wang L, Li L, Yuan Q, Pei X. Research on lncRNA related to drought resistance of Shanlan upland rice. BMC Genomics 2022; 23:336. [PMID: 35490237 PMCID: PMC9055766 DOI: 10.1186/s12864-022-08546-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Drought has become the major abiotic stress that causes losses in rice yields and consequently is one of the main environmental factors threatening food security. Long non-coding RNA (lncRNA) is known to play an important role in plant response to drought stress, while the mechanisms of competing endogenous RNA (ceRNA) in drought resistance in upland rice have been rarely reported. Results In our study, a total of 191 lncRNAs, 2115 mRNAs and 32 miRNAs (microRNAs) were found by strand-specific sequencing and small RNA sequencing to be differentially expressed in drought-stressed rice. Functional analysis of results indicate that they play important roles in hormone signal transduction, chlorophyll synthesis, protein synthesis and other pathways. Construction of a ceRNA network revealed that MSTRG.28732.3 may interact with miR171 in the chlorophyll biosynthesis pathway and affect the ability of plants to withstand drought stress by regulating Os02g0662700, Os02g0663100 and Os06g0105350. The accuracy of the regulatory network was verified by qRT-PCR. Conclusion Our results provide a theoretical basis for future studies on the potential function of lncRNA in plant drought resistance, and they provide new genetic resources for drought-resistant rice breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08546-0.
Collapse
Affiliation(s)
- Xinsen Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoling Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Laiyi Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qianhua Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Arbuscular Mycorrhizae Mitigate Aluminum Toxicity and Regulate Proline Metabolism in Plants Grown in Acidic Soil. J Fungi (Basel) 2021; 7:jof7070531. [PMID: 34209315 PMCID: PMC8304902 DOI: 10.3390/jof7070531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and induce stress tolerance. Proline is reported to accumulate in mycorrhizal plants under stressful conditions, such as aluminum (Al) stress. However, the detailed changes induced in proline metabolism under AMF–plant symbiosis has not been studied. Accordingly, this work aimed to study how Al-stressed grass (barley) and legume (lotus) species respond to AMF inoculation at growth and biochemical levels. The associated changes in Al uptake and accumulation, the rate of photosynthesis, and the key enzymes and metabolites involved in proline biosynthesis and degradation pathways were studied. Soil contamination with Al induced Al accumulation in tissues of both species and, consequently, reduced plant growth and the rate of photosynthesis, while more tolerance was noticed in lotus. Inoculation with AMF significantly reduced Al accumulation and mitigated the negative impacts of Al on growth and photosynthesis in both species; however, these positive effects were more pronounced in barley plants. The mitigating action of AMF was associated with upregulation of proline biosynthesis through glutamate and ornithine pathways, more in lotus than in barley, and repression of its catabolism. The increased proline level in lotus was consistent with improved N metabolism (N level and nitrate reductase). Overall, this study suggests the role of AMF in mitigating Al stress, where regulation of proline metabolism is a worthy mechanism underlying this mitigating action.
Collapse
|
10
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
11
|
Peng W, Li W, Song N, Tang Z, Liu J, Wang Y, Pan S, Dai L, Wang B. Genome-Wide Characterization, Evolution, and Expression Profile Analysis of GATA Transcription Factors in Brachypodium distachyon. Int J Mol Sci 2021; 22:ijms22042026. [PMID: 33670757 PMCID: PMC7922913 DOI: 10.3390/ijms22042026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The GATA proteins, functioning as transcription factors (TFs), are involved in multiple plant physiological and biochemical processes. In this study, 28 GATA TFs of Brachypodium distachyon (BdGATA) were systematically characterized via whole-genome analysis. BdGATA genes unevenly distribute on five chromosomes of B. distachyon and undergo purifying selection during the evolution process. The putative cis-acting regulatory elements and gene interaction network of BdGATA were found to be associated with hormones and defense responses. Noticeably, the expression profiles measured by quantitative real-time PCR indicated that BdGATA genes were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatment, and 10 of them responded to invasion of the fungal pathogen Magnaporthe oryzae, which causes rice blast disease. Genome-wide characterization, evolution, and expression profile analysis of BdGATA genes can open new avenues for uncovering the functions of the GATA genes family in plants and further improve the knowledge of cellular signaling in plant defense.
Collapse
Affiliation(s)
- Weiye Peng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Na Song
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zejun Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Jing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sujun Pan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.D.); (B.W.)
| | - Bing Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, China; (W.P.); (W.L.); (N.S.); (Z.T.); (J.L.); (Y.W.); (S.P.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.D.); (B.W.)
| |
Collapse
|
12
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
13
|
Altunoğlu YÇ, Keleş M, Can TH, Baloğlu MC. Identification of watermelon heat shock protein members and tissue-specific gene expression analysis under combined drought and heat stresses. ACTA ACUST UNITED AC 2019; 43:404-419. [PMID: 31892809 PMCID: PMC6911259 DOI: 10.3906/biy-1907-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heat shock protein (Hsp) gene family members in the watermelon genome were identified and characterized by bioinformatics analysis. In addition, expression profiles of genes under combined drought and heat stress conditions were experimentally analyzed. In the watermelon genome, 39 genes belonging to the sHsp family, 101 genes belonging to the Hsp40 family, 23 genes belonging to the Hsp60 family, 12 genes belonging to the Hsp70 family, 6 genes belonging to the Hsp90 family, and 102 genes belonging to the Hsp100 family were found. It was also observed that the proteins in the same cluster in the phylogenetic trees had similar motif patterns. When the estimated 3-dimensional structures of the Hsp proteins were examined, it was determined that the α-helical structure was dominant in almost all families. The most orthologous relationship appeared to be between watermelon, soybean, and poplar in the ClaHsp gene families. For tissue-specific gene expression analysis under combined stress conditions, expression analysis of one representative Hsp gene each from root, stem, leaf, and shoot tissues was performed by real-time PCR. A significant increase was detected usually at 30 min in almost all tissues. This study provides extensive information for watermelon Hsps, and can enhance our knowledge about the relationships between Hsp genes and combined stresses.
Collapse
Affiliation(s)
- Yasemin Çelik Altunoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Merve Keleş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Tevfik Hasan Can
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| |
Collapse
|
14
|
Martinelli F, Cannarozzi G, Balan B, Siegrist F, Weichert A, Blösch R, Tadele Z. Identification of miRNAs linked with the drought response of tef [Eragrostis tef (Zucc.) Trotter]. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:163-172. [PMID: 29656008 DOI: 10.1016/j.jplph.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.
Collapse
Affiliation(s)
- Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Gina Cannarozzi
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bipin Balan
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Fredy Siegrist
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Annett Weichert
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Regula Blösch
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Zerihun Tadele
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
15
|
Wu J, Wang L, Wang S. MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Gene 2017; 628:78-86. [PMID: 28711666 DOI: 10.1016/j.gene.2017.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Drought stress significantly reduces common bean yields. Recently, some drought-related miRNAs were found in various plants. However, reports of miRNAs involved in drought stress in common bean are limited. Here, we obtained four sRNA samples from drought-tolerant and -sensitive cultivars of common bean that experienced with or without drought treatment. A total of 49 novel miRNAs and 120 known miRNAs were detected. Under drought treatment, 9 and 7 known miRNAs were down and up-regulated, respectively, and 5 and 3 of the novel miRNAs were increased and decreased, respectively. Among these miRNAs, four miRNAs shared the same pattern of expression between Long 22-0579 and Naihua. Target genes of these miRNAs included transcription factors, protein kinases, and nuclear transcription factors. Finally, we verified all of the differentially expressed miRNAs by RT-qPCR, and we identified 16 miRNAs that are potentially associated with the drought stress response. These miRNAs and target genes will be useful in future basic studies and in applied studies investigating how miRNA regulation can be used to enhance drought resistance in plant species.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China
| | - Shumin Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing 100081, China.
| |
Collapse
|
16
|
Qu J, Zhao M, Hsiang T, Feng X, Zhang J, Huang C. Identification and Characterization of Small Noncoding RNAs in Genome Sequences of the Edible Fungus Pleurotus ostreatus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2503023. [PMID: 27703969 PMCID: PMC5040776 DOI: 10.1155/2016/2503023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
Abstract
Noncoding RNAs (ncRNAs) have been identified in many fungi. However, no genome-scale identification of ncRNAs has been inventoried for basidiomycetes. In this research, we detected 254 small noncoding RNAs (sncRNAs) in a genome assembly of an isolate (CCEF00389) of Pleurotus ostreatus, which is a widely cultivated edible basidiomycetous fungus worldwide. The identified sncRNAs include snRNAs, snoRNAs, tRNAs, and miRNAs. SnRNA U1 was not found in CCEF00389 genome assembly and some other basidiomycetous genomes by BLASTn. This implies that if snRNA U1 of basidiomycetes exists, it has a sequence that varies significantly from other organisms. By analyzing the distribution of sncRNA loci, we found that snRNAs and most tRNAs (88.6%) were located in pseudo-UTR regions, while miRNAs are commonly found in introns. To analyze the evolutionary conservation of the sncRNAs in P. ostreatus, we aligned all 254 sncRNAs to the genome assemblies of some other Agaricomycotina fungi. The results suggest that most sncRNAs (77.56%) were highly conserved in P. ostreatus, and 20% were conserved in Agaricomycotina fungi. These findings indicate that most sncRNAs of P. ostreatus were not conserved across Agaricomycotina fungi.
Collapse
Affiliation(s)
- Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoxing Feng
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Micro & Nano Research Institute of IC and System Applications, Shenzhen, Guangdong, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| |
Collapse
|
17
|
Li J, Sun C, Yu N, Wang C, Zhang T, Bu H. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 127:90-94. [PMID: 26821663 DOI: 10.1016/j.pestbp.2015.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Hexaconazole is one of the triazole complexes that are broadly used as systemic fungicides with non-traditional plant growth regulator properties. Hexaconazole-Cu complex (Hex-Cu) is a new triazole derivative, and the biological effect of Hex-Cu has been rarely studied. In this work, we investigated the functions of Hex-Cu in regulating growth and the response to salt stress in the seedlings of Triticum aestivum. Pretreated with 60μmolL(-1) Hex-Cu, the seedling plants got increased root/shoot ratio by 42.0%, and the contents of chlorophyll and soluble protein were also increased by 38.1% and 27.9%, respectively. Furthermore, Hex-Cu alleviated the growth inhibition caused by salt stress, enabled the seedlings to maintain a higher proline content and lower malondialdehyde accumulation. The functions of Hex-Cu in regulating the expression of proline synthetase (P5CS and P5CR) genes were investigated by quantitative real-time PCR (qPCR). Under 100mmolL(-1) NaCl stress, the expression of P5CS and P5CR in the seedlings by Hex-Cu pretreatment were significantly up-regulated. It attributed to the enhanced salt tolerance in plants.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China
| | - Cuiyu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China
| | - Nan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China
| | - Chen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China
| | - Tongtong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China
| | - Huaiyu Bu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Northwest University, Xi'an 710069, China.
| |
Collapse
|
18
|
Qamar A, Mysore KS, Senthil-Kumar M. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:503. [PMID: 26217357 PMCID: PMC4491715 DOI: 10.3389/fpls.2015.00503] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/22/2015] [Indexed: 05/18/2023]
Abstract
Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection.
Collapse
Affiliation(s)
- Aarzoo Qamar
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Muthappa Senthil-Kumar
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Muthappa Senthil-Kumar, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P. O. Box 10531, New Delhi 110067, India,
| |
Collapse
|