1
|
Omotuyi O, Olatunji OM, Nash O, Oyinloye B, Soremekun O, Ijagbuji A, Fatumo S. Benzimidazole compound abrogates SARS-COV-2 receptor-binding domain (RBD)/ACE2 interaction In vitro. Microb Pathog 2023; 176:105994. [PMID: 36682669 PMCID: PMC9851952 DOI: 10.1016/j.micpath.2023.105994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The development of clinically actionable pharmaceuticals against coronavirus disease (COVID-19); an infectious disease caused by the SARS-CoV-2 virus is very important for ending the pandemic. Coronavirus spike glycoprotein (GP)-Receptor Binding Domain (RBD) and its interaction with host receptor angiotensin converting enzyme 2 (ACE2) is one of the most structurally understood but therapeutically untapped aspect of COVID-19 pathogenesis. Binding interface based on previous x-ray structure of RBD/ACE2 were virtually screened to identify fragments with high-binding score from 12,000 chemical building blocks. The hit compound was subjected to fingerprint-based similarity search to identify compounds within the FDA-approved drug library containing the same core scaffold. Identified compounds were then re-docked into of RBD/ACE2. The best ranked compound was validated for RBD/ACE2 inhibition using commercial kit. Molecular dynamics simulation was conducted to provide further insight into the mechanism of inhibition. From the original 12000 chemical building blocks, benzimidazole (BAZ) scaffold was identified. Fingerprint-based similarity search of the FDA-approved drug library for BAZ-containing compounds identified 12 drugs with the benzimidazole-like substructure. When these compounds were re-docked into GP/ACE2 interface, the consensus docking identified bazedoxifene as the hit. In vitro RBD/ACE2 inhibition kinetics showed micromolar IC50 value (1.237 μM) in the presence of bazedoxifene. Molecular dynamics simulation of RBD/ACE2 in the presence BAZ resulted in loss of contact and specific hydrogen-bond interaction required for RBD/ACE2 stability. Taken together, these findings identified benzimidazole scaffold as a building block for developing novel RBD/ACE2 complex inhibitor and provided mechanistic basis for the use of bazedoxifene as a repurposable drug for the treatment of COVID-19 acting at RBD/ACE2 interface.
Collapse
Affiliation(s)
- Olaposi Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria; Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria; Bio-Computing & Drug Research Unit, Mols and Sims, Ado Ekiti, Ekiti State, Nigeria.
| | - Olusina M Olatunji
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, PMB 5118, Nigeria
| | - Babatunji Oyinloye
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria; Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria; Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Ayodeji Ijagbuji
- Pharmaceutics International, Inc. Hunt Valley, Maryland, United States
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda; H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria; Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Workman AS. Comparative analyses and molecular videography of MD simulations on WT human SOD1. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Identification of novel chemical compounds targeting filovirus VP40-mediated particle production. Antiviral Res 2022; 199:105267. [DOI: 10.1016/j.antiviral.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
|
4
|
Quan J, Ma C, Wang Y, Hu B, Zhang D, Zhang Z, Wang J, Cheng M. Repurposing of cefpodoxime proxetil as potent neuroprotective agent through computational prediction and in vitro validation. J Biomol Struct Dyn 2021; 39:3975-3985. [PMID: 32448083 DOI: 10.1080/07391102.2020.1772884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 01/17/2023]
Abstract
In recent reports, NR2B-NMDA receptor antagonists showed more research value because of its strong targeting ability and less side effects potential. In 2016, EVT-101 was reported to bind in an almost entirely new binding region of this target. Whether strikingly different binding modes can improve targeting and reduce side effects is worth studying. In our preliminary work, we explored the binding patterns of ifenprodil and EVT-101, found the key amino acids and summarized the pharmacophores, hoping to find such antagonists that target the two binding modes simultaneously. In this study, we developed a scalable virtual screening workflow in the FDA-approved drugs library to identify novel NR2B-NMDAR antagonists based on the combination of two pharmacophores. Cefpodoxime proxetil (5) was identified as the hit compound, and it was found for the first time that 5 might have neuroprotective activity as a NR2B-NMDAR antagonist. This result interested us to make further study, the ligand-receptor interactions modeled by molecular docking studies showed that the compound could perfectly merge both the pharmacophore characteristics of ifenprodil and EVT-101 at the binding cavity between the ATDs of GluN1 and GluN2B. The accuracy of molecular docking results and binding stability of ligand-receptor complexes were validated through 100 ns molecular dynamics simulation and binding free energy calculation. Afterwards, MTT assay (49.8%±0.1%, 5 μM) on NMDA injured SH-SY5Y cells and evidence of the effect on attenuating Ca2+ influx induced by NMDA were applied to validate the computational results, further investigation showed that 5 could suppress the NR2B upregulation induced by NMDA. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Dongping Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhuo Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Sanad MH, Farag AB, Rizvi SFA. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study presents development and characterization of a radiotracer, [125I]iodonefiracetam ([125I]iodoNEF). Labeling with high yield and radiochemical purity was achieved through the formation of a [125I]iodoNEF radiotracer after investigating many factors like oxidizing agent content (chloramines-T (Ch-T)), substrate amount (Nefiracetam (NEF)), pH of reaction mixture, reaction time and temperature. Nefiracetam (NEF) is known as nootropic agent, acting as N-methyl-d-aspartic acid receptor ligand (NMDA). The radiolabeled compound was stable, and exhibited the logarithm of the partition coefficient (log p) value of [125I]iodonefiracetam as 1.85 (lipophilic). Biodistribution studies in normal mice confirmed the suitability of the [125I]iodoNEF radiotracer as a novel tracer for brain imaging. High uptake of 8.61 ± 0.14 percent injected dose/g organ was observed in mice
Collapse
Affiliation(s)
- M. H. Sanad
- Labeled Compounds Department , Hot Laboratories Center, Egyptian Atomic Energy Authority , P.O. Box 13759 , Cairo , Egypt
| | - A. B. Farag
- Pharmaceutical Chemistry Department , Faculty of Pharmacy, Ahram Canadian University , Giza , Egypt
| | - S. F. A. Rizvi
- College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000 , Gansu , PR China
| |
Collapse
|
6
|
Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics. Biomolecules 2019; 9:biom9100546. [PMID: 31569344 PMCID: PMC6843686 DOI: 10.3390/biom9100546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Aleš Balík
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| | - Ladislav Vyklický
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
7
|
Ogunwa TH, Taii K, Sadakane K, Kawata Y, Maruta S, Miyanishi T. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5. J Biochem 2019; 166:129-137. [PMID: 30785183 DOI: 10.1093/jb/mvz015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Among 40 plant-derived biflavonoids with inhibitory potential against Eg5, morelloflavone from Garcinia dulcis leaves was selected for further testing based on in silico analysis of binding modes, molecular interactions, binding energies and functional groups that interact with Eg5. Computational models predicted that morelloflavone binds the putative allosteric pocket of Eg5, within the cavity surrounded by amino acid residues of Ile-136, Glu-116, Glu-118, Trp-127, Gly-117, Ala-133, Glu-215, Leu-214 and Tyr-211. Binding energy was -8.4 kcal/mol, with a single hydrogen bond formed between morelloflavone and Tyr-211. The binding configuration was comparable to that of a reference inhibitor, S-trityl-L-cysteine. Subsequent biochemical analysis in vitro confirmed that morelloflavone inhibited both the basal and microtubule-activated ATPase activity of Eg5 in a manner that does not compete with ATP binding. Morelloflavone also suppressed Eg5 gliding along microtubules. These results suggest that morelloflavone binds the allosteric binding site in Eg5 and thereby inhibits ATPase activity and motor function of Eg5.
Collapse
Affiliation(s)
- Tomisin Happy Ogunwa
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Kenichi Taii
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Kei Sadakane
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Yuka Kawata
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Takayuki Miyanishi
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| |
Collapse
|
8
|
Sinitskiy AV, Pande VS. Computer Simulations Predict High Structural Heterogeneity of Functional State of NMDA Receptors. Biophys J 2018; 115:841-852. [PMID: 30029773 DOI: 10.1016/j.bpj.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs)-i.e., transmembrane proteins expressed in neurons-play a central role in the molecular mechanisms of learning and memory formation. It is unclear how the known atomic structures of NMDARs determined by x-ray crystallography and electron cryomicroscopy (18 published Protein Data Bank entries) relate to the functional states of NMDARs inferred from electrophysiological recordings (multiple closed, open, preopen, etc. states). We address this problem by using molecular dynamics simulations at atomic resolution, a method successfully applied in the past to much smaller biomolecules. Our simulations predict that several conformations of NMDARs with experimentally determined geometries, including four "nonactive" electron cryomicroscopy structures, rapidly interconvert on submicrosecond timescales and therefore may correspond to the same functional state of the receptor (specifically, one of the closed states). This conclusion is not trivial because these conformational transitions involve changes in certain interatomic distances as large as tens of Å. The simulations also predict differences in the conformational dynamics of the apo and holo (i.e., agonist and coagonist bound) forms of the receptor on the microsecond timescale. To our knowledge, five new conformations of NMDARs, with geometries joining various features from different known experimental structures, are also predicted by the model. The main limitation of this work stems from its limited sampling (30 μs of aggregate length of molecular dynamics trajectories). Though this level significantly exceeds the sampling in previous simulations of parts of NMDARs, it is still much lower than the sampling recently achieved for smaller biomolecules (up to a few milliseconds), thus precluding, in particular, the observation of transitions between different functional states of NMDARs. Despite this limitation, such computational predictions may guide further experimental studies on the structure, dynamics, and function of NMDARs, for example by suggesting optimal locations of spectroscopic probes. Overall, atomic resolution simulations provide, to our knowledge, a novel perspective on the structure and dynamics of NMDARs, complementing information obtained by experimental methods.
Collapse
Affiliation(s)
- Anton V Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California.
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, California.
| |
Collapse
|
9
|
Yu A, Lau AY. Glutamate and Glycine Binding to the NMDA Receptor. Structure 2018; 26:1035-1043.e2. [PMID: 29887499 DOI: 10.1016/j.str.2018.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
At central nervous system synapses, agonist binding to postsynaptic ionotropic glutamate receptors (iGluRs) results in signaling between neurons. N-Methyl-D-aspartic acid (NMDA) receptors are a unique family of iGluRs that activate in response to the concurrent binding of glutamate and glycine. Here, we investigate the process of agonist binding to the GluN2A (glutamate binding) and GluN1 (glycine binding) NMDA receptor subtypes using long-timescale unbiased molecular dynamics simulations. We find that positively charged residues on the surface of the GluN2A ligand-binding domain (LBD) assist glutamate binding via a "guided-diffusion" mechanism, similar in fashion to glutamate binding to the GluA2 LBD of AMPA receptors. Glutamate can also bind in an inverted orientation. Glycine, on the other hand, binds to the GluN1 LBD via an "unguided-diffusion" mechanism, whereby glycine finds its binding site primarily by random thermal fluctuations. Free energy calculations quantify the glutamate- and glycine-binding processes.
Collapse
Affiliation(s)
- Alvin Yu
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Albert Y Lau
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Omotuyi OI, Nash O, Inyang OK, Ogidigo J, Enejoh O, Okpalefe O, Hamada T. Flavonoid-rich extract of Chromolaena odorata modulate circulating GLP-1 in Wistar rats: computational evaluation of TGR5 involvement. 3 Biotech 2018; 8:124. [PMID: 29450114 DOI: 10.1007/s13205-018-1138-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chromolaena odorata is a major bio-resource in folkloric treatment of diabetes. In the present study, its anti-diabetic component and underlying mechanism were investigated. A library containing 140 phytocompounds previously characterized from C. odorata was generated and docked (Autodock Vina) into homology models of dipeptidyl peptidase (DPP)-4, Takeda-G-protein-receptor-5 (TGR5), glucagon-like peptide 1 (GLP1) receptor, renal sodium dependent glucose transporter (SGLUT)-1/2 and nucleotide-binding oligomerization domain (NOD) proteins 1&2. GLP-1 gene (RT-PCR) modulation and its release (EIA) by C. odorata were confirmed in vivo. From the docking result above, TGR5 was identified as a major target for two key C. odorata flavonoids (5,7-dihydroxy-6-4-dimethoxyflavanone and homoesperetin-7-rutinoside); sodium taurocholate and C. odorata powder included into the diet of the animals both raised the intestinal GLP-1 expression versus control (p < 0.05); When treated with flavonoid-rich extract of C. odorata (CoF) or malvidin, circulating GLP-1 increased by 130.7% in malvidin-treated subjects (0 vs. 45 min). CoF treatment also resulted in 128.5 and 275% increase for 10 and 30 mg/kg b.w., respectively. CONCLUSIONS The results of this study support that C. odorata flavonoids may modulate the expression of GLP-1 and its release via TGR5. This finding may underscore its anti-diabetic potency.
Collapse
Affiliation(s)
- Olaposi Idowu Omotuyi
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Oyekanmi Nash
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olumide Kayode Inyang
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Joyce Ogidigo
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Ojochenemi Enejoh
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Okiemute Okpalefe
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tsuyoshi Hamada
- 3Advanced Computing Centre, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Sinitskiy AV, Pande VS. Simulated Dynamics of Glycans on Ligand-Binding Domain of NMDA Receptors Reveals Strong Dynamic Coupling between Glycans and Protein Core. J Chem Theory Comput 2017; 13:5496-5505. [PMID: 29019687 DOI: 10.1021/acs.jctc.7b00817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptors, key neuronal receptors playing the central role in learning and memory, are heavily glycosylated in vivo. Astonishingly little is known about the structure, dynamics, and physiological relevance of glycans attached to them. We recently demonstrated that certain glycans on the ligand binding domain (LBD) of NMDA receptors (NMDARs) can serve as intramolecular potentiators, changing EC50 of NMDAR coagonists. In this work, we use molecular dynamics trajectories, in aggregate 86.5 μs long, of the glycosylated LBD of the GluN1 subunit of the NMDAR to investigate the behavior of glycans on NMDARs. Though all glycans in our simulations were structurally the same (Man5), the dynamics of glycans at different locations on NMDARs was surprisingly different. The slowest-time scale motions that we detected in various glycans in some cases corresponded to a flipping of parts of glycans relative to each other, while in other cases they reduced to a head-to-tail bending of a glycan. We predict that time scales of conformational changes in glycans on the GluN1 LBD of NMDARs range from nanoseconds to at least hundreds of microseconds. Some of the conformational changes in the glycans correlate with the physiologically important clamshell-like opening and closing of the GluN1 LBD domain. Thus, glycans are an integral part of NMDARs, and computational models of NMDARs should include glycans to faithfully represent the structure and the dynamics of these receptors.
Collapse
Affiliation(s)
- Anton V Sinitskiy
- Department of Chemistry, ‡Department of Computer Science, and §Department of Structural Biology, Stanford University , Stanford, California 94305, United States
| | - Vijay S Pande
- Department of Chemistry, ‡Department of Computer Science, and §Department of Structural Biology, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
12
|
Sinitskiy AV, Stanley NH, Hackos DH, Hanson JE, Sellers BD, Pande VS. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors. Sci Rep 2017; 7:44578. [PMID: 28378791 PMCID: PMC5381272 DOI: 10.1038/srep44578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/09/2017] [Indexed: 01/10/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.
Collapse
Affiliation(s)
- Anton V Sinitskiy
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nathaniel H Stanley
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.,Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin D Sellers
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Computer Science and Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Molecular dynamics simulations reveal the allosteric effect of F1174C resistance mutation to ceritinib in ALK-associated lung cancer. Comput Biol Chem 2016; 65:54-60. [DOI: 10.1016/j.compbiolchem.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 01/14/2023]
|
14
|
Sasaki K, Omotuyi OI, Ueda M, Shinohara K, Ueda H. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Mol Brain 2015; 8:83. [PMID: 26637193 PMCID: PMC4670538 DOI: 10.1186/s13041-015-0176-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. RESULTS We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. CONCLUSIONS The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Olaposi Idowu Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Mutsumi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|