1
|
Malik MZ, Dashti M, Jangid A, Channanath A, Elsa John S, Singh RKB, Al-Mulla F, Alphonse Thanaraj T. Complex p53 dynamics regulated by miR-125b in cellular responses to reactive oxidative stress and DNA damage. Brief Bioinform 2024; 26:bbae706. [PMID: 39820247 PMCID: PMC11736902 DOI: 10.1093/bib/bbae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation. The interactions between miRNA-125b, p53, and reactive oxygen species (ROS) are significant in the context of cellular stress responses and apoptosis. However, the regulating mechanism of miR-125b with p53 is not fully studied. The dynamics of p53 and its response to the miR-125b regulation are still open questions. In the present study, we try to answer some of these fundamental questions based on basic model built from available experimental reports. The miR-125b-p53 regulatory network is modeled using a set of 11 molecular species variables. The biochemical network of miR-125b-p53, described by 22 reaction channels, is represented by coupled ordinary differential equations (ODEs) using the mass action law of chemical kinetics. These ODEs are solved numerically using the standard fourth-order Runge-Kutta method to analyze the dynamical behavior of the system. The biochemical network model we designed is based on both experimental and theoretical reported data. The p53 dynamics driven by miR-125b exhibit five distinct dynamical states: first and second stable states, first and second dynamical states, and a sustained oscillation state. These different p53 dynamical states may correspond to various cellular conditions. If the stress induced by miR-125b is weak, the system will be weakly activated, favoring a return to normal functioning. However, if the stress is significantly strong, the system will move to an active state. To sustain this active state, which is far from equilibrium with little scope for returning to normal conditions, the system may transition to an apoptotic state by crossing through other intermediate states, as it is unlikely to regain normal functioning. The p53 dynamical states show a multifractal nature, contributed by both short- and long-range correlations. The networks illustrated from these dynamical states follow hierarchical scale-free features, exhibiting an assortative nature with an absence of the centrality-lethality rule. Furthermore, the active dynamical state is generally closer to hierarchical characteristics and is self-organized. Our research study reveals that significant activity of miR-125b on the p53 regulatory network and its dynamics can only be observed when the system is slightly activated by ROS. However, this process does not necessarily require the direct study of ROS activity. These findings elucidate the mechanisms by which cells integrate signaling pathways with distinct temporal activity patterns to encode stress specificity and direct diverse cell fate decisions.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arshad Channanath
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | | |
Collapse
|
2
|
Chiang DC, Yap BK. TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer. Curr Issues Mol Biol 2024; 46:10745-10761. [PMID: 39451518 PMCID: PMC11506413 DOI: 10.3390/cimb46100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.
Collapse
Affiliation(s)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
3
|
Priya A, Dashti M, Thanaraj TA, Irshad M, Singh V, Tandon R, Mehrotra R, Singh AK, Mago P, Singh V, Malik MZ, Ray AK. Identification of potential regulatory mechanisms and therapeutic targets for lung cancer. J Biomol Struct Dyn 2024:1-18. [PMID: 38319037 DOI: 10.1080/07391102.2024.2310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Lung cancer poses a significant health threat globally, especially in regions like India, with 5-year survival rates remain alarmingly low. Our study aimed to uncover key markers for effective treatment and early detection. We identified specific genes related to lung cancer using the BioXpress database and delved into their roles through DAVID enrichment analysis. By employing network theory, we explored the intricate interactions within lung cancer networks, identifying ASPM and MKI67 as crucial regulator genes. Predictions of microRNA and transcription factor interactions provided additional insights. Examining gene expression patterns using GEPIA and KM Plotter revealed the clinical relevance of these key genes. In our pursuit of targeted therapies, Drug Bank pointed to methotrexate as a potential drug for the identified key regulator genes. Confirming this, molecular docking studies through Swiss Dock showed promising binding interactions. To ensure stability, we conducted molecular dynamics simulations using the AMBER 16 suite. In summary, our study pinpoints ASPM and MKI67 as vital regulators in lung cancer networks. The identification of hub genes and functional pathways enhances our understanding of molecular processes, offering potential therapeutic targets. Importantly, methotrexate emerged as a promising drug candidate, supported by robust docking and simulation studies. These findings lay a solid foundation for further experimental validations and hold promise for advancing personalized therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | - Virendra Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Department of Botany, Shri Aurobindo College, University of Delhi, New Delhi, India to Campus Of Open Learning, University of Delhi, New Delhi, India
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| | - Vishal Singh
- Delhi School of Public Health, Institution of Eminence, University of Delhi, New Delhi, India
| | | | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Jangid A, Malik MZ, Ramaswamy R, Singh RKB. Transition and identification of pathological states in p53 dynamics for therapeutic intervention. Sci Rep 2021; 11:2349. [PMID: 33504910 PMCID: PMC7840995 DOI: 10.1038/s41598-021-82054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
We study a minimal model of the stress-driven p53 regulatory network that includes competition between active and mutant forms of the tumor-suppressor gene p53. Depending on the nature and level of the external stress signal, four distinct dynamical states of p53 are observed. These states can be distinguished by different dynamical properties which associate to active, apoptotic, pre-malignant and cancer states. Transitions between any two states, active, apoptotic, and cancer, are found to be unidirectional and irreversible if the stress signal is either oscillatory or constant. When the signal decays exponentially, the apoptotic state vanishes, and for low stress the pre-malignant state is bounded by two critical points, allowing the system to transition reversibly from the active to the pre-malignant state. For significantly large stress, the range of the pre-malignant state expands, and the system moves to irreversible cancerous state, which is a stable attractor. This suggests that identification of the pre-malignant state may be important both for therapeutic intervention as well as for drug delivery.
Collapse
Affiliation(s)
- Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ram Ramaswamy
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Singh SN, Malik MZ, Singh RKB. Molecular crosstalk: Notch can manipulate Hes1 and miR-9 behavior. J Theor Biol 2020; 504:110404. [PMID: 32717196 DOI: 10.1016/j.jtbi.2020.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023]
Abstract
We propose a Hes1-Notch-miR-9 regulatory network and studied the regulating mechanism of miR-9 and Hes1 dynamics driven by Notch. Change in Notch concentration, which serves as a stress signal, can trigger the dynamics of Hes1 and miR-9 at five different states, namely, sTable (2), sustain (1) and mixed (2) states those may correspond to different cellular states. Further, this Notch stress signal introduce time reversal oscillation, which behaves as backward wave, after a certain threshold value of the stress signal and defends the system from moving to apoptosis. We also observe heterogeneous patterns of Hes1, miR-9 and other molecular species in various two dimensional parameter spaces and found that the variability in the patterns is triggered by Hill coefficient and Hes1 stress signal. The phase or bifurcation diagram in time period of oscillation (TN) driven by Notch signal provides all five states, predicts minimum threshold value TNc beyond which tendency to build up backward wave starts and TNc serves as bifurcation point of the system.
Collapse
Affiliation(s)
- Shakti Nath Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Wang J, Ying YY, Chen ZH, Shao KD, Zhang WP, Lin SY. Guilu Erxian Glue () Inhibits Chemotherapy-Induced Bone Marrow Hematopoietic Stem Cell Senescence in Mice May via p16 INK4a-Rb Signaling Pathway. Chin J Integr Med 2020; 26:819-824. [PMID: 32915425 DOI: 10.1007/s11655-020-3098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effect of Guilu Erxian Glue (, GEG) on cyclophosphamide (CTX)-induced bone marrow hematopoietic stem cells (HSCs) senescence in mice and explore the underlying mechanism. METHODS The H22 liver cancer ascites lump model was established in male Kunming mice by injecting intraperitoneally (i.p.) with 5 × 106/mL H22 cells per mouse. Fifty tumor-bearing mice were divided into the control, model, pifithrin-α, GEG, and GEG+pifithrin-α groups using a random number table, 10 mice in each group. CTX (100 mg/kg i.p.) was administrated to mice from day 1 to day 3 (d1-d3) continuously except for the control group. The mice in the pifithrin-α, GEG and GEG+pifithrin-α groups were treated with pifithrin-α (2.2 mg/(kg·d) i.p.) for 6 consecutive days (d4-d9), GEG (9.5 g/(kg·d) i.p.) for 9 consecutive days (d1-d9), and GEG plus pifithrin-α, respectively. HSCs were collected after 9-d drug treatment. The anti-aging effect of GEG was studied by cell viability, cell cycle, and β -galactosidase (β -gal) assays. The mRNA and protein expressions of cyclin-dependent kinase 2 (CDK2), CDK4, inhibitor of cyclin-dependent kinase 4a encoding the tumor suppressor protein p16 (p16INK4a), p21Cip1/Waf1, p53, and phosphorylated retinoblastoma (pRb) were evaluated by quantitative real-time reverse transcription-polymerase chain reaction and semi-quantitative Western blot, respectively. RESULTS Compared with the model group, GEG increased cell viability as well as proliferation (P<0.05 or P<0.01) and reduced β -gal expression. Furthermore, GEG significantly decreased the expressions of p16INK4a, p53 and p21Cip1/Waf1 proteins, and increased the expressions of CDK2, CDK4 and pRb proteins compared with the model group (P<0.05 or P<0.01). CONCLUSION GEG can alleviate CTX-induced HSCs senescence in mice, and the p16INK4a-Rb signaling pathway might be the underlying mechanism.
Collapse
Affiliation(s)
- Jue Wang
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Yin-Yin Ying
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Zhao-Hui Chen
- Department of Oncology, Ningbo Forth Hospital, Ningbo, Zhejiang Province, 315700, China
| | - Ke-Ding Shao
- Science Research Department, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei-Ping Zhang
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Sheng-You Lin
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310007, China.
| |
Collapse
|
7
|
Yang J, Li Y, He M, Qiao J, Sang Y, Cheang LH, Gomes FC, Hu Y, Li Z, Liu N, Zhang H, Zha Z. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF‐1‐mediated transcriptional network. J Cell Physiol 2019; 235:3894-3904. [PMID: 31595984 DOI: 10.1002/jcp.29283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Yu‐Hang Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ming‐Tang He
- Department of Orthopedics Longgang Orthopedics Hospital of Shenzhen Shenzhen Guangdong China
| | - Ju‐Feng Qiao
- Department of Orthopedic Surgery Chashan Hospital of Dongguan Dongguan Guangdong China
| | - Yuan Sang
- Department of Orthopedic Surgery, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong China
| | - Lek Hang Cheang
- Department of Orthotraumaology Centro Hospitalar Conde S. Januario Macau China
| | - Fernando Cardoso Gomes
- Department of Physical Medicine and Rehabilitation Centro Hospitalar Conde S. Januario Macau China
| | - Yang Hu
- School of Preclinical Medicine Jinan University Guangzhou Guangdong China
| | - Zhen‐Yan Li
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Ning Liu
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| | - Zhen‐Gang Zha
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital Jinan University Guangzhou Guangdong China
| |
Collapse
|
8
|
Xu S, Sun F, Ren L, Yang H, Tian N, Peng S. Resveratrol controlled the fate of porcine pancreatic stem cells through the Wnt/β-catenin signaling pathway mediated by Sirt1. PLoS One 2017; 12:e0187159. [PMID: 29073244 PMCID: PMC5658170 DOI: 10.1371/journal.pone.0187159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/14/2017] [Indexed: 01/02/2023] Open
Abstract
Porcine pancreatic stem cells (PSCs) are considered promising transplant materials that may be used to treat diabetes, but some problems, such as insufficient cell number and low differentiation efficiency, should be solved before its clinical application. Resveratrol is a natural polyphenolic compound that can alleviate the complications of diabetes. In this study, we aimed to explore the specific effect of resveratrol on porcine PSCs. We treated porcine PSCs with 10 μM, 25 μM resveratrol to explore the effect of resveratrol on porcine PSCs. We found that 10 μM resveratrol improved the proliferation of porcine PSCs, increased the expression of A-β-catenin (active β-catenin), Pcna, C-Myc, Bcl-2 and sirtuin-1 (Sirt1), and decreased the expression of P53, Caspase3. While 25 μM resveratrol had almost opposite effect compared with 10 μM resveratrol group. The utilization of Dickkopf-related protein 1 (DKK1, Wnt signaling pathway inhibitor) and nicotinamide (Sirt1 inhibitor) suggested that resveratrol regulated cell proliferation by controlling Wnt signaling pathway and this effect was mediated by Sirt1. Our results further revealed that 10 μM resveratrol promoted the formation of β-like cells regulated by Wnt/β-catenin signal pathway. Relatively low-dose resveratrol could improve porcine PSCs fate. It lays theoretical foundation for diabetes treatment with cell transplantation in future.
Collapse
Affiliation(s)
- Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
| | - Fen Sun
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
| | - Lipeng Ren
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
| | - Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
| | - Na Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, P. R., China
- * E-mail:
| |
Collapse
|
9
|
Chen YX, Zhu DY, Yin JH, Yin WJ, Zhang YL, Ding H, Yu XW, Mei J, Gao YS, Zhang CQ. The protective effect of PFTα on alcohol-induced osteonecrosis of the femoral head. Oncotarget 2017; 8:100691-100707. [PMID: 29246013 PMCID: PMC5725055 DOI: 10.18632/oncotarget.19160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic studies have shown alcohol plays a pivotal role in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to explore the underlying mechanism of alcohol-induced ONFH and the protective effect of pifithrin-α (PFTα). In vitro, we found ethanol treatment significantly activated p53, suppressed Wnt/β-catenin signaling and inhibited osteogenic-related proteins. Furthermore, by separating the cytoplasmic and nuclear proteins, we found ethanol inhibited osteogenesis by impairing the accumulation of β-catenin in both the cytoplasm and nucleus in human bone mesenchymal stem cells (hBMSCs), which resulted from activating glycogen synthase kinase-3β (GSK-3β). Therefore, PFTα, a p53 inhibitor, was introduced in this study to block the ethanol-triggered activation of p53 in hBMSCs and alcohol-induced ONFH in a rat model. In vivo, we established alcohol-induced ONFH in rats and investigated the protective effect of PFTα. Hematoxylin & eosin (H&E) staining combined with TdT-mediated dUTP nick end labeling (TUNEL), cleaved caspase-3 immunohistochemical staining, and micro-CT images revealed substantial ONFH in the alcohol-administered rats, whereas significantly less osteonecrosis developed in the rats injected with PFTα. Osteogenic-related proteins, including osteocalcin, osteopontin and collagen I, were significantly decreased in the alcohol-administered rats, whereas these results were reversed in the PFTα-injected rats. Fluorochrome labeling similarly showed that alcohol significantly reduced the osteogenic activity in the rat femoral head, which was blocked by the injection of PFTα. In conclusion, PFTα had an antagonistic effect against the effects of ethanol on hBMSCs and could be a clinical strategy to prevent the development of alcohol-induced ONFH.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dao-Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun-Hui Yin
- Institute of Microsurgery on Extremities, Shanghai 200233, China
| | - Wen-Jing Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yue-Lei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiao-Wei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiong Mei
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Institute of Microsurgery on Extremities, Shanghai 200233, China
| |
Collapse
|
10
|
Dynamical states, possibilities and propagation of stress signal. Sci Rep 2017; 7:40596. [PMID: 28106087 PMCID: PMC5247771 DOI: 10.1038/srep40596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states which are contributed from long range correlation with varied fluctuations due to active molecular interaction. The topological properties of the networks corresponding to these dynamical states have hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay in an active dynamical state whose counterpart complex network is closest to hierarchical topology with exhibited roles of few interacting hubs. During the propagation of stress signal, the system allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/pathways with slight modifications, indicating efficient information processing and democratic sharing of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the system favors to establish self-organization.
Collapse
|
11
|
Hernández-Lemus E, Li W, Meyer P. Advances in systems biology--New trends and perspectives. Comput Biol Chem 2015; 59 Pt B:1-2. [PMID: 26364255 DOI: 10.1016/j.compbiolchem.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), and Center for Complexity Sciences, National Autonomous University of México (UNAM), Mexico.
| | - Wentian Li
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, USA.
| | - Pablo Meyer
- Translational Systems Biology and Nanobiotechnology Group, IBM T.J. Watson Research Center, USA.
| |
Collapse
|